MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL TECHNICAL UNIVERSITY
«KHARKIV POLYTECHNIC INSTITUTE»

L. V. Kurpa, K. I. Liubytska, V. M. Burlayenko

LINEAR ALGEBRA:
The Textbook for Engineering Students

EDUCATIONAL TEXTBOOK
for students of technical specialties in all forms of education

JI. B. Kypma, K. I. JTlro6uipka, B. M. Bypnaenko

JIHIMHA AJITEBPA:

Kypc aj1si CTyAeHTIB 1HXXEHEPHO-TEXHIUHUX CIel1aIbHOCTEH

HABYAJILHUY TTOCIBHUK
JUTSI CTYZICHTIB TEXHIYHUX CHEIialbHOCTEH yCiX (OopM HAaBUAHHS

//E

Kharkiv
NTU «KhPI»
2024



MIHICTEPCTBO OCBITU I HAYKU YKPATHU

HALIOHAJIbHUM TEXHIYHU YHIBEPCUTET
«XAPKIBCBKUU ITOJIITEXHIUHUU IHCTUTY T»

L. V. Kurpa, K. I. Liubytska, V. M. Burlayenko

LINEAR ALGEBRA:
The Textbook for Engineering Students

EDUCATIONAL TEXTBOOK
for students of technical specialties in all forms of education

JI. B. Kypna, K. I. Jlrobunpka, B. M. bypnaenko

JITHIMHA AJITEBPA:

Kypc 1715 cTyIeHTIB 1HKEHEPHO-TEXHIYHUX CIIEI1aTbHOCTEH

HABYAJIbHUU ITOCIBHUK
JUTSL CTYJICHTIB TEXHIYHUX CIIEeIaIbHOCTEHN yCiX (OopM HaBYaAHHS

3ATBEP/>KEHO
peaaKIiitHO-BHUIaBHUYOIO
panoro HTY «XIII»,

IIPOTOKOJT
Ne 1 Big 15.02. 2024 p.

XapkiB
HTY «XIII»
2024



VIK 512.64 (075)

K93 _
Reviewers:
N.D. Sizova, Professor, Dr. Phys.-Math. Sci., Professor of the
Department of Computer Sciences and Information Technologies,
M. Beketov National University of Urban Economy in Kharkiv
| O.M. Lytvyn,| Professor, Dr. Phys.-Math. Sci., Professor of the
Department of Information Computer Technologies and
Mathematics, Ukrainian Engineering and Pedagogical Academy
Kurpa L.V.

K 93 Jliniiina anrebpa: Kypc misi CTyneHTIB 1HXEHEPHO-TEXHIUYHUX CIIELiaIbHOCTEH :
HaBYaJbHUHN MOCIOHUK I CTYJEHTIB TEXHIYHUX CIenialbHOCTeH ycix ¢hopm HaBuanHs / JI. B.
Kypna, K. 1. Jlrobunbka, B. M. Bbypmaenko - XapkiB : HTY «XIIl», 2024. — 154 c. —
AHTTIICBKOI0 MOBOIO.

[TociOHUK MICTUTH TEOPETUYHUN MaTepiasl 3 JIHINHOI anreOpu aHTIIHCHKOI MOBOIO, SKHMA
OXOIUTIOE KJTFOYOB1 TOHSTTS, TBEPIKCHHS Ta q)opMme Bin nmpusHaueHwit s FITHOOKOTO
PO3YMiHHS Ta PO3BMTKY HAaBUYOK Yy 3aCTocyBaHH1 niniiinoi anre6pu. Kpim Toro, y nociGuuky
HABEJICHO YHCJICHHI NMPUKJIAAN JJIs UTFOCTpalii MPaKTUIHOTO 3aCTOCYBaHHS Martepiany, IIo
TMOJICTIIY€E 3aCBOEHHS MOHATH CTYICHTAMH TEXHIYHUX CIEIIaIbHOCTEH yCiX ()OpM HAaBYAHHSI.
P03p06neHo JUISL CTYNIEHTIB TEXHIYHUX yHlBepCI/ITeTlB IO BUBYAIOTH KYPC JIiHiHHOI anre6pu
aHTIIHCHKOI0 MOBOKO. [leii MOCiOHUK TaKoXK KOpI/ICHI/II/I JUIsl IHO3CMHUX CTY/CHTIB | BUKJIa/la4iB,
SIKI IIYKalTh JOTIOMOTY Yy pO3poO0Ili BIACHUX JICKIIWHUX MaTepialiiB Jjis BHUIIMX TEXHIYHHX
HaBYAJbHUX 3aKJIAJIB.

ISBN 978-617-05-0479-1

Kypmna JI.B.

K 93 Linear algebra: the Textbook for Engineering Students : educational textbook for
students of technical specialties in all forms of education / L. V. Kurpa, K. L
Liubytska, V.M. Burlayenko - Kharkiv : NTU «KhPI», 2024. — 154 p. — in English.

This textbook provides theoretical content on linear algebra presented in English. It covers
key concepts, statements, and formulas essential for a profound understanding and skill
development in working with linear algebra. Additionally, numerous examples are included
to illustrate the practical applications of the presented material, facilitating easier mastery
of the concepts for students of technical specialties in all forms of education.

Tailored for students at technical universities who are taking a linear algebra course in English.
It's also useful for foreign students and lecturers seeking assistance in developing their
own lecture materials in higher technical educational institutions.

Fig. 7; Bibl. titles: 12
YK 512.64 (075)

© JI.B. Kypna,
ISBN 978-617-05-0479-1 © K.I. JIro6uupbka,

© B.M. Bypnaenko,
© HTYVY “XIII”, 2024



CONTENT

INTRODUCTION ...ttt ettt sne e 5
CHAPTER 1. MATRICES AND DETERMINANTS ..o, 8
1.1. Basic CONCePtS OF MALIICES ......eeiivieiiiie e 8
1.2. BasiC 0perations 0N MALMICES. .......ccoiurieriiieieesiee e sriesie et sree e snee e 10
1.3, BIOCK MALIICES.....eeiiieiiie ettt 12

1.3.1. Addition and subtraction of block matrices..........cc.cccoevvviiiniinienn, 14

1.3.2. Multiplication of block MatriCes.........ccccovvvvivievic i, 15
1.4. The rank of the matrix and rank determination methods...............cccccueneen. 17
1.5, Laplace's thEOIEM ......ccueiiieiiece e 20
CHAPTER 2. LINEAR SPACES .......o oot 25
2.1. Basic concepts and eXamples ... 25
2.2. Basis and dimension of linear SPAcCe .........cccccvevieiieiie i 30
2.3. The transformation of coordinates with a change of basis .......................... 35
2.4, SUDSPACES ...ttt nnees 43
2.5. Linear spanning Set (SPAN) .....c.ccceerereerierieniesie s 45
2.6. The sum and intersection of SUDSPACES .........ccccvviiiiiiiic e, 50
CHAPTER 3. LINEAR OPERATORS......ccooiietseeee e 54
3.1. Concept of the [iNear OPErator...........ccoveiiierieiie e 54
3.2. Matrix representation of the linear Operator ..........c.cccevvevevie e cieeseeeen,s 56
3.3. Matrix transformation of a linear operator with changing a basis .............. 66
3.4. Eigenvectors and eigenvalues of linear operators...........ccccccevvvevvveeieesinennn, 70
3.5. Operations with linear operators and their matrices ...........cccocevveveeieenen, 80
3.6. SIMPIe StrUCLUIe OPEIALON .......eovieiiee et 82
CHAPTER 4. EUCLIDEAN SPACE AND ORTHONORMAL BASIS ..... 84
4.1. The concept of EuClidean SPacCe.........ccocviiiiiiiinicie e, 84
4.2. Orthogonality and modulus of the VECLOr ..........c.cccvevvevei i, 85
4.3. Schwartz and Cauchy-Bunyakovsky inequality ...........cccccoooevviiiiiineinennn, 87
4.4. Orthogonal and orthonormal basis. Gram-Schmidt procedure.................... 89
4.5. Orthogonal cCoOMPIEMENTS ........coviiiiiiee s 94
4.6. The Gram determinant ..........ccooiieriiienenie e 100



4.7. Orthogonal ProJECLION .......ccccv e 102

4.8. Orthogonal projection and minimization problem...........cccccovevieeiiiennnen, 106
CHAPTER 5. LINEAR OPERATORS IN EUCLIDEAN SPACE............ 108
5.1, AdJOINT OPEIALOL ....c.vvieiiie ettt e e e e srae s 108
5.2. Unitary and orthogonal Operators..........ccuvvieereenieesie e e e 112
5.3. Self-adjoiNt OPEratorsS .......c.cccuviieeiieiee e 118
5.4. Spectral decomposition of a self-adjoint operator .........c.ccccevvevvevieinnnne, 123
CHAPTER 6. BILINEAR AND QUADRATIC FORMS ........cccoovvviviiienn, 129
6.1. Basic concepts of Bilinear functions (forms).........c.cccecevvieiiiiiiie i, 129
6.2. QUAAIALIC TOIMS ...t e 131
6.3. Change Of BaSIS.......ccueiieiiiiiiiii it 132
6.4. Classification of quadratic fOrms ..........cccccveiiiii i 134
6.5. Lagrange reduction of quadratic form to canonical form......................... 137
6.6. Quadratic forms and principal axes..........ccccoevvieiiie i 141
6.7. Simultaneous reduction of two quadratic forms to the canonical form..... 145
Appendix 1. Short English-Russian Vocabulary ..........c.cccccovvveiiiiieiiiiinenenn, 149
REFERENGCES ... .o 153



INTRODUCTION

Mathematical methods play a vital role in various scientific and engineering
disciplines. Therefore, students, irrespective of their chosen field, require
indispensably a solid theoretical foundation in mathematics to address real-world
challenges effectively. Linear algebra provides a powerful toolkit for solving a
wide range of problems across various disciplines, from physics and engineering
to computer science and economics. Its methods are fundamental in analyzing and
manipulating data, modeling physical systems, and understanding complex
structures. Thus, proficiency in linear algebra is indispensable for students
pursuing careers in these fields.

Moreover, in today's interconnected world, where collaboration knows no
borders, the ability to communicate mathematical ideas effectively across
linguistic and cultural boundaries is paramount. Ukrainian technical universities
are increasingly engaged in collaborative research and projects with international
partners. Hence, students equipped with knowledge of international mathematical
terminology can seamlessly integrate into these collaborative environments. They
can contribute meaningfully to interdisciplinary teams, draw upon a diverse range
of perspectives, and tackle complex challenges with confidence. Therefore,
fostering proficiency in international mathematical language not only enhances
students' academic and professional prospects but also fosters global cooperation
and innovation in science and engineering.

Hence, recognizing the crucial role of linear algebra in engineering
education and the necessity of understanding international mathematical
terminology, we felt inspired to write the textbook "Linear Algebra: A Textbook
for Engineering Students™. This textbook offers a mathematical course tailored
for undergraduate students at technical universities. It has evolved from a series

of lectures delivered by the authors over the past decade at the National Technical



University "Kharkov Polytechnic Institute”, including students enrolled in
mathematical courses taught in English.

The textbook consists of six chapters, each designed to provide a
comprehensive understanding of linear algebra concepts. The opening chapter
introduces fundamental theoretical principles concerning matrices and
determinants, laying the groundwork for proficient solving and analysis of linear
algebraic systems. Additionally, the chapter delves into the definition and
operations with block matrices, offering a detailed examination of this essential
topic. In the subsequent chapter, the focus shifts to the exploration of linear
spaces, providing insights into their key concepts, properties, and applications in
solving linear algebraic problems. This also includes a detailed explanation of
coordinate transformation with a change of basis in a linear space and operations
on subspaces. Moving forward, the third chapter serves as a thorough introduction
to linear operators, shedding light on their significance and applications. As linear
transformations play a central role in linear algebra, linear transformations are
thoroughly considered in this chapter of the textbook. Additionally, this chapter
introduces eigenvalues and eigenvectors, highlighting their significance in
decomposing matrices into simpler formats and uncovering essential system
characteristics. The fourth chapter focuses on concepts related to Euclidean space
and orthonormal bases, providing a solid foundation for understanding geometric
aspects within the linear algebra. It delves into topics such as inner products,
orthogonality, and projections. Additionally, the chapter explores the Gram-
Schmidt process for orthogonalization and the concept of minimization problem.
In the fifth chapter, the discussion expands to encompass advanced topics in linear
algebra. These include a detailed examination of adjoint and self-adjoint
operators, unitary and orthogonal operators, and an in-depth exploration of their
fundamental properties. This chapter goes deeper into the intricate aspects of these

mathematical constructs, providing students with a comprehensive understanding



of their applications and significance within the field of linear algebra. The final,
sixth chapter considers bilinear and quadratic forms, providing a comprehensive
exploration of these mathematical constructions. It covers various aspects,
including their matrix representation, eigenvalues, and eigenvectors associated
with bilinear and quadratic forms, discussions on positive definite, negative
definite, and indefinite quadratic forms, as well as Sylvester's law of inertia for
quadratic forms and diagonalization. Each chapter is enriched with numerous
examples, enhancing the clarity and comprehension of the subject matter.

This book is recommended for students at technical universities enrolled in
the Higher Mathematics course conducted in English, as well as for foreign
students and universities lecturers seeking assistance in developing their own
lecture materials. Additionally, it is valuable for anyone with an interest in
acquiring knowledge of linear algebra using mathematical terminology in

English.



Chapter 1. MATRICES AND DETERMINANTS

1.1. Basic Concepts of Matrices

The basic concepts of the matrices theory and determinants were
presented in the course "Algebra and Analytical Geometry". In addition to these
basic concepts, linear algebra studies finite, countable as well as infinite-
dimensional vector spaces, linear operators, methods for finding their
eigenvalues and eigenvectors, quadratic forms and methods for their reduction
to canonical form, as well as many other topics that require knowledge of
mathematics. operations with matrices and determinants. Therefore, we will
begin this course by reviewing matrices and determinants.

First of all, let's remember what is called a matrix and what arithmetic
operations with matrices can be performed.

Definition. A matrix A of size mxn is called a set of m-n elements &;;

written in the table with m rows and n columns, which has a form:

R P) a,

dy; Ay Ay
A=

aml am2 amn

In more compact form the matrix is denoted as follows:
AZ(aij )m,n ’ where | =1..m ’ | =1...n.
The individual elements a; are also called entries or components of the

matrix A. The first subscript is the number of the i-th row and the second one is

the number of the j-th column where the component a; is located. Note that

here m is a total number of rows, while n is a total number of columns in the
matrix A.

Definition. Matrices A and B are called equal if they have the same size



and their corresponding components are equal.

Definition. A matrix with all zero components is called null matrix or
zero matrix.

Definition. A matrix is called a square of the order n if the number of
rows coincides with the number of columns, i.e. m =n.

Definition. A square matrix is called diagonal if all the components

except those located on the leading (main) diagonal (a1 ,as5 ,...,a,, ) are equal

to zero. The diagonal matrix is denoted as

a, 0 .. 0

Azl O B2 =diag(a,,,a,,,..a,,).
0 0 nn
0 0 .. a

nn

Definition. A diagonal matrix in which all the components of the leading
diagonal are equal to 1 is called an identity (unit) matrix and is usually denoted
by the letter E or I.

When it is necessary to distinguish which size of identity matrix is being
discussed, we will use the notation I, for the n X n identity matrix.

Definition. The matrix A7 is called transposed to the matrix A, if it is

obtained from the given matrix A by replacing the columns with rows or vice

VErsa, I.e.
all a21 aml
a a e a
AT _ 12 22 m2
dn  dzp - App

Definition. If A=A",=a; =a;, i=Lm, j=1n then the matrix is called

symmetrical matrix.

Definition. The matrix A is called a skew-symmetric matrix if



A:—AT,:>aij =-a;, i=1m, j=1n

Definition. A matrix is called a sparse matrix if its zero components
predominate over non-zero components.

An example of the sparse matrix is any diagonal matrix.

A square matrix A of the n-th order is called K-diagonal (where K is a
positive odd number) if

K-1

ajj =0 provided that |i - j| >
Example of a three-diagonal matrix:
di1 do 0 0 0
dp axp axzg 0 0

0 azgp azg azy O

o O O o

0 0 a3 ay ag

1.2. Basic Operations on Matrices
Since the matrices are mathematical objects, it is naturally to introduce some
algebraic operations on them such as addition, subtraction and multiplication.
Definition. The sum of two matrices A and B of the same size is called a
matrix C=A+B with the components defined by the elementwise sum of the

corresponding original matrices, i.e.

C=A+B, cj=a;+b;, i=Lm, j=1n
It is obvious that the matrix C has the same size as the original matrices.
Definition. The multiplication of the matrix A by a scalar « is called a
matrix C=aA whose components are computed by multiplication of the

corresponding components of the matrix A by the given scalar ¢, i.e.

Cij =0{aij, i=1,m, j=1,n

10



Definition. The multiplication of the matrix A of size mx n by the matrix

B of size nx p is called a matrix C = AB of the size mx p with components

defined as follows:

n -
Cij =Zaikbkj, i=1m, J=1,p
k=1

Let us remain on some special cases of matrix multiplication.

1. The rule of multiplication of diagonal matrices.

all O “es 0 bll 0 e O a.llbll 0 e O
O a22 nes 0 0 b22 aes 0 _ O a22b22 nes 0
0 0 ..ap)\0 0 .. by 0 0 .. apby,

That is, as a result of multiplying two diagonal matrices A and B we
obtain a diagonal matrix C, whose diagonal components are calculated as a

product of the diagonal components of the original matrices, i.e.

diag(ay1,a20 +--.ann )-diag(by1 b2y .00 )= diag(aybr1,822025 .. 8nnbAn )

2. The rule of multiplying a matrix by a diagonal matrix.

Rule A: multiplication of the diagonal matrix by the matrix on the left

dy 0 .. 0 )(ay a, .. a, dydy;  dpdy, .. dpay,
0 dyp . 0 jjay ap .. 8y | |dpdy dypan .. dydy
o 0 .. d,/lay, a, .. a, dpay dpa, .o diag,

That is, if matrix A is multiplied by a diagonal matrix on the left, we obtain a
matrix whose rows are multiplied by the corresponding diagonal element located

in the corresponding row.

11



Rule B: multiplication of the matrix by the diagonal matrix on the right

d11 a2 ... Qqp dll 0 0 alldll a12d22 alndnn
doq1 Aoy ... djp 0 d22 0 B a21d11 a22d22 aannn
8pp  an2 - 8pp 0 0 .. dp amdy;  anpdzy .. appdpy

If the matrix A is multiplied by the diagonal matrix on the right, it is
equivalent to multiplying each column by the element of the diagonal matrix
located in the corresponding column.

This result explains why | =diag(1,1,...1) is called an identity (unity)

matrix.

1.3 Block matrices

If a matrix is very large and/or the matrix contains groups of the
components that can be collected together based on some common properties,
then a special algebraic construction called a block matrix is used instead of an

extended matrix.

Definition. If all components of a matrix are matrices of certain
dimensions then it is called a block matrix, and the components of such matrix
are called blocks.

Agreement of the blocks means that all blocks located in one row of the
block matrix have the same number of rows, and in one column — the same
number of columns. The number of rows k and the number of columns | of the

block matrix of size mxn form its format (or block size) kxI. The next

abbreviation is used for block matrix: A= [Aij], where the symbol A;; denotes

the block, i.e. a matrix located on the i-th row and j-th column.

Definition. Combining the components of the matrix into blocks is called

12



grouping, the reverse operation is a deployment.

The purpose of grouping is to reduce the real size of the matrix and, as a
consequence, to simplify the algebraic operations performed with it.

Two block matrices A and B are equal to each other, if the equality

A = By; is valid for all the relevant blocks.

However, a matrix can be divided into blocks in many ways, that is the
matrix can be partitioned with block matrices of different sizes.

An example block matrix is presented below:

1]2 3 5) (1 2|3 5) (1 2[3 5 (1L 2|3 5
A_|2/021] j20/21] [20/21] [20]21
3/2 13/ [32[1 3] (32133 2]13
413 2 1) \4 3|2 1) (4 3]21) (4 3]21

Let’s consider the matrix A= (5,5,5) with the same components. Let the
matrices be C=(5,5); D =(5). Let's form block matricesB = (C,D), L=(D,C)
and K =(D,D,D). Matrices B and L have the same format but different block
sizes, and matrices B, L and K have different formats, while they all are derived

from matrix A.
Usually, to obtain a block matrix of the certain dimension, it is divided by

a system of parallel lines (vertical and horizontal).

Example 1.1.
1 2|1 2

3 4|3 4 B B 1 2 5 6
=71 _- < |= , Where B = , C= .
5 B C 3 4 7 8
7

6
8

Square block matrix, which contains square blocks on the leading

diagonal, and zero blocks outside of the leading diagonal, is called a block-

13



diagonal matrix.

An example of a block-diagonal matrix is presented below:

1 2|0 0

3 40 0| (Ay O
Wﬂ_(o Azzj'
0 0|7 8

1.3.1 Addition and subtraction of block matrices
If the block matrices A and B have the same dimension and are partitioned in the

same way, and A; and Bj; are their corresponding blocks of the same size, then

to add (subtract) these matrices it is enough to add (subtract) the corresponding

blocks of these matrices, i.e.

[y [+ [y |= [y + 8y .
Remark. If the matrices have different sizes, then the assembly operation
cannot be performed that is the addition or subtraction of the block matrices is
impossible.

Example 1.2. Calculate:C = 4A+ 3B, where

3 -2 0 4 0 3
A: , B:
1 2 -3 -2 7 1
Solution.

12 -8 O
4A =
4 8 -12 24 -8 9
= C=
(12 0 9] -2 29 -9

-6 21 3

3B =

Assume that the matrices are divided into blocks as follows:

A=(An, Ap), All:ﬁj’ Alz:(_z O]

2 -3

14



-2 71

B = (Buy, Bro), 511:(4j’ 8122(0 BJ

C=4A+3B=(4A11,4A5)+(3B11,3B5) = (4A11 +3By1,4A15 + 3By ) =
(12+2 (-8 0 +o 9)) (24 -8 9
l4-6 (8 —-12) |21 3)] =2 29 -9

1.3.2 Multiplication of block matrices
Above a multiplication operation was defined for matrices A and B under

condition that the number of columns of matrix A is equal to the number of rows

- : : Cyq .. C
of matrix B. Then the product A-B is called a matrix C = 21 2k
Cm1 Cmk
n
where Cij = Zaipbpj A= [aij ]i:]_,m, B = [blj ]i=1,n ., C= [Cij ]i=l,m-
p=1 j=Ln j=Lk j=1k

In the case of block matrices, we have to state the following rule:

Rule: In order to multiply the block matrix A= [Aij ]i=1,m format mxn by

j=1,n

the block matrix Bz[B :lizl,n format nxk with the corresponding sizes of

=Lk

ij

n
blocks we should apply the following formula C = [Cij :|i:1,m , Gjj= Z'Aﬁpoj
J=1k p=1
Agreement between block sizes means that all multiplications of the
matrices used in these formulas are correct.
Remark. If there is no agreement between the block sizes, then the block

matrices need to be expanded and grouped in another way.

Example 1.3. Divide matrices A and B into blocks in different ways and

multiply.

15



111 3 312 1 3 3 12
A=[01]2 4 B=/0|1 2 A-B=|0 2 16
0/10 5 010 3 0O 0 15
Solution.
A1 A 0 2
a) A= , =1, =(1,3), Ay = =
) ( Ay Ay Ajq A =(13), Ay 0 2=\,
Bi1 Bi 0 1 2
B = , B4 =3, B, =(2,1), By = , Boy = )
[le B,, 11 12 =(2,1), By 0 2=y 3

A11B11 + ApBar ABio + AjpBa

A-B=

Ci1 Cr2

AnBr1 + AppBay AgiBrp + Agp By

Ai1Bi1 = (1)3)=3,

A1Bro = ()2

&
[
oo
-
N
I
7\
o
N—
—_
N
[
~—
Il
7\
o O
o
N—
>
N
N
o
N
N
Il
7\
o N
o b
N—
77—\
o BB
w N
N—
Il
VR
o N
= B
(62 BN o)

Cx Co

0
A;pBoy =(1 3)£OJ=0, Ci1=3

4
5

]

1)=(2 1), Aj,B, =(1 3)[1 ZJ:(l 11)[C, =(3 12)
|

3 3 12
A-B=C=|0 2 16|.
0 0 15
b) If the matrices are divided as:
1 113 312 1
A=|0 24|, B=(0|1 2|,
0 0|5 0|0 3

16



then

Al—ll A1—3 Ay =(0 0) Ay =5

1=y 2 2= 4| 21 = : 22 =9,
3 2 1

Bi1 = ol B = L o) By, =0, B, =(0 3).

1 1Y3 3 3 0 3
Ci1 = AuBra + AipBog = (O 9 Oj * (4) 0= (0] " [Oj ) (OJ

1 1y2 1 3 3 3 0 9 3 12
Ci2 = AuiBro + ArBas = (0 5 )1 Zj + (4](0 3)= (2 4j + (0 12j = (2 16)

3
C21 = A21Bll+ A22821 :(O O{ j+5020

Cop = ApBip + AppByy =(0 0

=
=N
H

2j+5-(0 3)=(0 0)+(0 15)=(0 15)

3 3 12
C=|0 2 16
0 0 15

1.4 The Rank of the Matrix and Rank Determination Methods

Definition. The rank of the matrix A (RgA) is a maximum order of its

nontrivial minors.

The following statement is valid: elementary transformations of a matrix
do not change its rank.

Definition. The elementary transformations are called the following
ones:

1. Multiplication of any row (column) of the matrix by a non-zero
number.

2. Addition of any row (column), previously multiplied by the non-zero
number, to another row (column).

3. Interchanging two rows (columns).

17



4. Elimination of zero rows (columns) and elimination of the duplicate or
proportional rows (columns) leaving only one of them.

Two matrices A and B are said to be similar or equivalent if there exist
elementary transforms such that the matrix A follows from the matrix B and vice
versa. Equivalent matrices have the same ranks.

The rank of a matrix can be found using two methods. The easiest of these

methods is “converting matrix into row echelon form”.

i. Converting the matrix into row echelon form.

To find RgA we can reduce the matrix to row echelon form, i.e. to the

matrix that meets the following requirements:

- the first non-zero number from the left (“leading coefficient™ or “pivot™)
is always to the right of the first non-zero number in the row above;

- rows consisting of all zeros are at the bottom of the matrix.

The matrix converted into row echelon form looks like this

1 a2 - Yy Ay - Bgp

0 a22 ) a2r a2r+1 ren a2n

0 0 .. &y &y - ang|

o 0 .. O o .. O

o 0 .. O o .. 0
where r leading coefficients a;1, @y , ..., 8, #0.

Thus, the rank of the matrix is a number of the non-zero leading coefficients, i.e.
ROA=T.
Example 1.4.

18



-1 2 1 -1 2 1 I‘4<—>r1 1 0 1
3 2 4 3 2 4| ko 01 1
r4/4:>r4
2 4 6 |~ ~l1 2 3|~|p+r=>r |~l0 2 2|~
r5/(—5):>r5
4 0 4 1 0 1| |b-3,=r |0 2 2
0 -5 -5 0 1 1 I’3—r4:>r4 0 21
1 0 1 1 0
nl2=r | |0 1 1 0 1 10 1
-1, =13
~ly-r=nl~l0 1 1]~ ~lo 0 -1[~|0 1 1
r5(—)r3
r5—r3:>r5 00 0 0 O 0 0 01
0 0 -1 0 0 O
RgA=3

ii. Using the method of fringing minors.

Theorem. Let the matrix A have a minor M of order r (r ;tO), and all

minorities (r+1)-th order, fringing M, are zero, then the rank of the matrix A is

equal tor.

Proof. By all bordering minors (r+1)-th order are zero, then, by the
theorem on the base minor, all columns of the matrix are a linear combination of
its “r” columns. That is, the maximum number of linearly independent columns

isequal tor=RgA=r H

Example 1.5 Calculate the rank using the fringing minor’s method

20| =4 By =3 i
A= =2 | & 73
1 -2 4 =34 0

3
One can notice that that minor 1 # 0. Let’s calculate its fringing minors.

We can first interchange the 1% and 3" columns. Then a non-zero minor will be

in the upper left corner, and the resulting matrix B will be equivalent to A
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(B~ A).

g1 W

B=

AP W
NN D
B R Ww
R

o w O

Consider the fringing minors. There will be 3 minors:

~3 -4 2
1 -2 1=6-4-16+16-6+4=0;

4 -2 1

3 -4 -3

1 -2 5 |=6-34+6-80-24+30-34-4=2-34+36-104=
4 -2 -34

=68+36-104=0;
3 -4 5
1 -2 3=-10-48+40+18=0.
4 -2 0
So, RgA=2.

1.5. Laplace's theorem
In the course of Algebra, we got acquainted with the concept of minor and

algebraic cofactors of the element of a matrix.
The minor of an element a;; is equal to the determinant of the matrix

remaining after excluding the i-th row and j-th column containing this element,

and is denoted as Mj; .
The algebraic cofactor of an element a;; is a signed minor, i.e. it is
defined by the formula: A; = (-1)i*] ‘Mj;.

Now we will generalize the definition of the minor of a matrix element

and introduce the concept of the k-th order minor of the matrix.
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Let’s consider a square matrix A. We can choose any k different columns
and rows of the given matrix (k <n). The components that stand at the
intersection of these k rows and k columns will form a matrix of the k-th order.
The determinant of this matrix is called a minor of the k-th order of this matrix
A.

The minor of the k -th order will be denoted as

lio...l
m=m'2

where the lower subscripts indicate the numbers of the chosen k columns, and
the upper ones indicate the numbers of the chosen k rows.

In particular, the minor of the n-th order of the matrix A with n rows and

columns, i.e. mis"  is the determinant of this matrix: miz" = detA.

Each element of the matrix is a minor of the first order.
If we cross out in the given matrix columns and rows which generate a
minor of the k-th order, the remaining components form a square matrix of the

(n-ky order. The determinant of this (n-k)-th order matrix is called an

additional minor to the minor m, which is generated by these k columns and k

rows, and is denoted as M = M il
hlo Jk

In particular, if the original minor of the first order is m= mij , that is an

element of the matrix &;; , then the additional minor is written as M=M ij:M i -

Example 1.6.
B h=3 J2 =6,
g h=2, i, =4.

Lh

o

Lo B s ! I & N
O O = O O O
P LS

L T N e I WA

— 00 B L D
3
N
~
o
01 o

—
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Definition. Algebraic cofactors of minor m are called its additional minor

hW+io+..+Hig+ i+ jo+...+ Jk

multiplied by a factor: (—1) ie.

I1I2Ik _ _1 i1+i2+...+ik+j1+ j2+...+jk . M |1I2Ik
hi2-J ( ) gk’

or

A, =GP MR wherep= 3+ ).
i=1

Below we present the Laplace’s theorem.
It is a rule that allows us to express the determinant of a matrix as a linear

combination of determinants of lower order matrices.

Laplace’s theorem. The n-th order determinant, A is equal to the sum of
the products of all its minors of the k-th order, which are selected on k rows,

multiplied by their algebraic cofactors.

iis.. |k |1|2...ik
m: . S
Z hiz- JlJZ---Jk

Similarly, the theorem is formulated in the case of k selected columns.

Note. The Laplace’s theorem allows reducing the calculation of the
determinant of the n-th order to the calculation of several determinants of the k-
th and (n-k)-th orders. As the order of the determinant increases, more new
determinants appear. Therefore, the Laplace theorem is effective in the case
when there exist many zero components in the determinant. Then k rows (or

columns) can be chosen so that most of the k-th order minors located on these
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rows will be equal to zero.

Example 1.7. Calculate the determinant:

-4 1 2 =2 1
1, 3—O0—1t——=>5
detA=(2 -3 1 -3 1
-1 -1 3 -1 0
b———0—2—>5

If we choose the 2-nd row and the 5-th one, then all the 2-nd order minors
formed by the first and third columns with all the others will be zero. Therefore,
it is necessary to take minors that are formed by the second, fourth and fifth

columns. That is

3 1 -4 2 1 3 5 -4 2 -2
detA:L 2“(_1)2+5+2+4' ) 1 1+ 5‘.(_1)2+5+2+5. 2 1 -3+
-1 3 0 -1 3 -1
1 5 -4 1 2
o ‘5‘.(_1)2+5+4+5. 2 _3 1=(6-4)-1)(6-2+1+12)+
-1 -1 3

+35-(4-12+6-2-36+4)+15-(36-4-1-6-4-6)=
=-2-(17)+35-(-36)+15-15=34-36- 35+ 225 = -1069.

Example 1.8. Calculate the determinant:

4

&

4

| SN T S 5

5 2 3 4
- .'_1'14-4+2+3. —i=ZiA00) =60
4 1 1

o -1 o0
e = b~ g

If the leading diagonal in the determinant A is covered by square matrices
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without common components with determinants A; and Az, and on one side of
them all the components are equal to zero, then such determinant is called a

quasi-triangular, and A=A -A,.

Indeed, if
ET ay, 0 0
ayy Aoy 0 0
Use Laplace's theorem
A: _akl akk_ 0 0 — . p . =
choosing first k rows
Qg1 o Agak | Kk - Agan
a'nl a'nk a'n,k+1 a'nn
aq gk
a a ak+1,k+1 ak+1,n
_ 21 2k .(_1)1+2+...+k =detA1 .det A2 _ Al 'AZ'
nksl -+ 8m
akl akk
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Chapter 2. LINEAR SPACES

2.1 Basic Concepts and Examples

Definition. A set of M elements x,y, z, ... of any nature is called a linear
space if:

I. The rule of "addition™ is defined. It means that for any two elements X

and y (XeM Ay e M) there corresponds the third elementz e M, which is

called the sum of the elements x andy

Ii. The operation of multiplication by a number A is defined (herewith

AeR,1eC, or A€ another numerical set). It means that VX e M and any

number A there corresponds the elementtr e M, which is called the product
U=/AX,0r u=x4.

Iii. The abovementioned two rules are subjected to the following axioms:
1°. Commutativity:

X+y=yV+X,VX,ye M
2°. Associativity:

X+(Y+2)=(X+y)+Z, VX, y,ZeM
3°. A zero element exists

30 (zero space element) such that X+0=X, VXM .

4°. An opposite element exists
VX € M 3 the opposite element (—X)e M such that X +(—X)=0.

5°. A unity element exists:
31 (unity element) such that 1-X = X.

6°. Distributivity of multiplication with respect to the sum of scalar factors
(A+ )X = AX+ X T°.AX+Y)=AX+ Ay .

8°. Distributivity of multiplication with respect to the product of scalar factors
Apx)=(Au)X, VXeM, Vi, ueR.
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Consequences of the axioms:

1) The difference X —y of two elements is called the element Z € M, such that

X=y+7Z.Itiseasy to see that:

x|
|
<
Il
bl
+
/?
<
~

Indeed, one can write that
y+(X+(=9)=(+5%)+ ()= (=9)+(

=(-y+y)+X=0+X=X.

<
4
|

N
Il

/l\\

<

—
x

<
4
|
Il

2) The uniqueness of the zero element.

Let’s exist two zero elements: 8; and 8, . Then by definition we have:
X+0,=X,VXeM
X+0,=X,VXeM
Put in the 1-st equation X =0, and in the second equation X = 8;. Then we get:
Bo% o,
0, +0, =06
3) The uniqueness of the opposite element.

Let for some element X € M exist two opposite elements yeM and ze M.

} 7—5—i} o
= _ = y=1Z.
Z=0-X

4) The zero element of the space is equal to the product of any element x e M

Then,

bl
N <
Dl ol

+
+

X

by a number «0» thatis 0-X =0
0-Xx=(0+0)-X=0-X+0-X
Let us add the opposite element «—0-X» to the left and right parts. Then we
have:
0=0+0-x=0-Xx = 0-x=0.
5) For any number « € R (T) the producte -0 =0.
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Indeed, o -8 = (6 +8). We can add again the opposite element «—a8» to the

left and right part. Then:

X=0.
7) VX, the product (—1)- X is the opposite element to X, i.e. (-1)-X = —X.

Indeed, 1-X +(-1)-x =(1+(~1))-x=0-x=0.

Some examples of linear spaces and presented below as follows:

Example 2.1. The set of all free vectors in three-dimensional space. The
operations of addition and multiplication by a scalar have been defined earlier in
the course of vector algebra. That is, the addition operation is defined by the
parallelogram rule, and multiplication by a scalar A is defined as the increase
(decrease) of the vector length in |/1\ times. In this case, if 1> 0, the direction of

the vector is preserved, and if A <0 it changes to the opposite.

Similar sets of vectors on the plane R * and on the straight line R! are
also linear spaces.
Often the elements of linear spaces are called vectors, and the linear

spaces themselves as vector spaces.

Example 2.2. Suppose that vectors in R3 are given by the coordinates:

X=(X1,X2,X3), ¥=(y1,y2,y3). Define the addition operation as

X+y=(x +Y1,X+Yo,X3 +Y3), and the multiplication operation by a scalar

as AX = (Axp,Axy -Axg).
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It is easy to verify that addition and scalar multiplication operations are
closed operations in R3 . Indeed, we can write down

)?:(xl,xz,xs)} X+y=2=(X+Y,% + Y, X +Y,)eR®
Y =(Y1: Y21 Ya) J% = (Axg, A%, — A%, ) € R?

Let us check axioms 1-8.

Lo X+yY=(x +y1.X +Y2.X3+Y3)= (Y1 +X,Y2 +X2,Y3 + X3)= Y +X

2. Xx+(y+2)=(X+y)+z  —obviously.

3.30=(0,0,0)

4.3 —X =(=%;,—Xy,—X3)

5.1-X = (Xq, Xp,~X3) # X

This axiom does not hold, so other axioms can be left unchecked. Thus,
this space does not belong to a linear space.

Example 2.3. Is n-dimensional space R" a linear space? The addition and

scalar multiplication operations are defined as:

Y =(Y1, Y2, Yn)

X = (Xq, X000, X ) X+ V=X + Y1, X0 + Yo ,ee0s X + Y1)
A X = (%1, X9 1000, Xy )

Solution. The mentioned operations are closed in R" . Let's check axioms:

It is obviously,
1°0 X+y=V+X

2°.  x+(y
(

o))
o
—~
~
_|_
=
<]
[l
—
—_
N
+
=
N—
=
>
N
=<
oD
) —
[l
N
<
=
>
N
<
=}
N—"
+
o
B
o
)
S
[l
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So the given space is not a linear space.
Example 2.4. Consider a set M of real functions that depend on one real

variable. These functions are continuous and positive values Vt < [a,b]. We

introduce operations of addition and multiplication by a number as:
X(t)® y(t) = x(t)- y(t)
o - X(t) = [x(t)]*

Obviously, these operations are closed in the set M. Let us check the

1°0 x@y=x() y(t)=yt)-xt)=yox
2°. x@(y@7)=x-(y-z2)=(x-y)z=(x®@y)®Z

That is, it is a linear space.

Example 2.5. A set {P,(t)} of all algebraic polynomials of degree not

exceeding the natural number n is a linear space.
However, the set of all only n -th degree polynomials is not a linear space,

since the sum of two such polynomials may have a smaller degree.
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2.2. Basis and Dimension of Linear Space
Let a linear space M be given on the set of real numbers R.
Definition 1. Elements of space M are called linearly dependent if there

exist such arbitrary constants «, £, y.... that among of them at least one is nonzero

but a linear combination of elements with these constants is zero element of the
space M, i.e.

X+ N+ +..+W=0 .a?+p2+y%+..+52%0

Definition 2. Elements X,V,Z,...,W of space M are called linearly

independent if their trivial linear combination is possible if and only if all

arbitrary constants o, f,y,... are equal to zero, that is a=pg=y=..0=0.

Otherwise, these elements are called linearly dependent.

Theorem. For the elements X,y,z,..,w of the linear space M to be linearly

dependent it is necessary and sufficient that one of these elements was a linear
combination of the others.

Necessity. Let the elements X,y,z,..,w be linearly dependent. This means

that oX+ Y +Z+..+ W =0, where at least one of the coefficients, for

example, a # 0. However, then, we can write X =—

R ™

y-Lz-.-%w. so
a a

this element is a linear combination of the others.
Sufficiency. Let one of the elements, for example, X, be a linear

combination of the others, ie. X=oV+oZ+..+W, =
1->‘<—a1y—a22—...—akv_v:§_ So, we have the situation when not all the

coefficient are equal to zero, indeed the first coefficient is 1, i.e."1"~#0. ®

Two elementary statements are true:
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1. If among the elements X,y,z,..,w is a zero element, then these elements

are linearly dependent.
2. If some elements of the set are linearly dependent, then all elements of

this set are linearly dependent.

Example 2.6. Examine the linear dependence or linear independence of

the set of matrices:
(L) o (2 A (20
Al_—23’ 2 5 )% -4 2
Solution: Let’s suppose that o, A +a,A, +a,A, =0, where O is a null

matrix the same order as the matrices A. Then,

1 0 . -1 -2 . 2 1 00
-2 3) *l2 5 -4 2) 0 0)=
o, —a,+2a, —2a,+a; ) (0 0
—2a,+2a,-4a, 3a,+5a,+2a,) \0 0
Hence, the system of equations with respect to unknown coefficients occurs

o, —a,+20,=0
- 20, +0,;=0

- 20y + 20, — 40, =0

3a, +5a, + 20, =0

Find the rank of the system matrix

1 -1 2 1 -1 2 1 -1 2

0 -2 1 n=r+2r] |0 -2 1 0 -2 1
~ ~ ~|r, =1, —4r,|~

-2 2 -4 |,=r-3r/ |0 0 O 0 0 0

3 5 2 0 8 -4 0O 0 O

We have 2 non-zero leading elements, i.e. the rank of matrix is 2, which is less
than the number of unknown coefficients. Therefore, a non-zero solution exists,

so the matrices form the linear dependent set.
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Example 2.7. Examine the linear dependence or linear independence of
the set of functions:
f (X) =X ’ f,(x) =sin X f,(x) =cosx
Solution: Let’s suppose that o, f,(X)+a,f,(X)+a,f,(x)=0, then,
o X+, Sin X+ o, cosx=0
If x=0 we have that o, =0, then, o, x+a,sin x=0.

The differentiation of this equation gets the equality: o, + &, cosx=0.

Substituting x =0 and x =% in the equality leads to the system of equations:

+a,=0
{al “ = a,=0and ,=0

o, =0
Thereby, the linear combination of the function is equal to zero provided that

a, =a,=a,=0,i.e. the functions form a linear independent set.

Definition. A set of linearly independent elements ¢, ,e,...,e, of the space

M is called the basis of this space, and any element of this space can be
represented as a linear combination of basic elements, i.e. it holds the following
equality:
n
X = inéi =X1§1+X2§2 +...+ Xnén (21)
i=1

Equation (2.1) is called the decomposition of the element X with respect

to the basis {g; } and the coefficients x; , i=1,n are called the coordinates

i=1,n’
of the element X in this base {g; }izﬁ . S0 any element X may be determined by

the set of numbers x;,X5 ,...,X;, -
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1
Example 2.8. Prove that the matrix A:( 4 J in the natural basis E,,

E,, E;, E, of the linear space M(2x2,R) has coordinates (1,-2,-3,4)

Solution: Let’s compose the linear combination

A=aE +a,E, +o;E; +a,E,. Then,
1 -2 1 0 01 0 0 0 0
=a, +a, + o, +a, =
-3 4 0 0 0 0 10 01
10 01 0 0 0 0
-2 -3 +4 =1E, - 2E, —-3E, +4E,
0 0 0 0 10 01

Example 2.9. Find coordinates of the vector given by the function
3x* —2x+2 e R%[x]

(a) in the natural basis of the linear space R[]
(b) in the basis of functions x*, x -1, 1
Solution: The natural basis is formed by the set of functions: e, =1, e, =X
, &, = x*. Then, the decomposition of the function is as follows:
3X* —2X+2=2-1-2-x+3-x"=2¢, — 2e, + 3¢,
that is the coordinates are (2, -2,3).
Decompose the function in the basis of functions b, = x*, b, =x-1, bs = 1:
3X* —2x+2=3-X*-2-(x-1)+0-1=3b, — 2b, +Ob,,

that is the coordinates are (3, -2,0).

Definition. A linear space M is called n-dimensional if it has n linearly

independent elements, and any (n+1) elements are linearly dependent.

In this case, the number "n" is called a dimension of space and is denoted as
dim M=n.
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Further, we will assume that n <c. Such a vector space is called finite-

dimensional.

Theorem. If V is a linear space of dimension n, then any n linearly

independent elements ey ,e,,..,e,, form its basis.

i=1,n

Proof. Let {g;} be any system of n linearly independent vectors of

space R, and X is any element of R. According to the definition of n-

dimensional space, the system of (n+1) vectors is linearly dependent. So
n p—
0!0)_(+ Zaiéi =0 (22)
i=1
Note thatag #0, because otherwise the vectors {g;} will be linearly

dependent. Then it follows from (2.2) that element Y:—Zﬂ-éi is a linear
xo
combination of {g; };_; . So, system of the elements {g; } generates the basis. B

Theorem. If a linear space V has a basis consisting of n elements, then
dimV=n.

Proof. Let {}i_i; be the basis of the space R. Choose any (n+1)

elements of this space 91,9, ....0,,0,,41 and decompose these elements in the
basis {&; }._i+ -

gl = allél + alzéz +...+ alnén

gz = a21§1 + azzéz +...+ a2n§n

On+1 = an4+1181 +An412€2 T+ 8ni1n€n,

where a;; € R. Obviously, the linear relationship {gi} IS equivalent to the

i=1,n+1
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linear dependence of the rows of the matrix:

a.ll 3.12 e a.ln
321 a22 a2n
A=
Any11 412 - Apydn

But rows of the matrix A are obviously dependent because its

RgA < n<n+L1. Therefore, at least one of the rows of this matrix will be a linear

combination of the others (by the base minor theorem). Hence, the system of

elements {g; } is linearly dependent. The theorem is proved. ®

i=1,n+1
2.3. The Transformation of Coordinates with a Change of Basis
Consider a linear space R" and set of vectors & ,a,,..,a, in this space.
To determine whether the system is the basis of this space, it is necessary to
construct their linear combination and equate it to the zero element, that is
o -a+a, a+..+a,-a =0, (2.3)
a,, a,, ..., a, are arbitrary constants.
This equality is equivalent to a system of linear algebraic equations

(SLAE). Indeed, if all vectors {a } are given by its coordinates

&=y ap .. an)
a,=(ay ap .. an)
an = (anl Ap2 .- App )’

then, the equality (2.3) can be written in expanded form as:
01d11 + apds +...+apap = 0
1d19 + Apdpy +...+xpdpo = 0

1d4 + pdoy +...+ Ay = 0
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The matrix A of this system is composed of coordinate vectors {a;},
which are the columns of this matrix A, i.e. (Aﬂ -0).
The system is homogeneous. The rank of the matrix RgA coincides with

number of linearly independent vectors.

Example 2.10. The system of vectors @& =(1,35-1-2),

a, =(2-1-343), a; =(51-17,4), a, =(7,7,913) are given in space R,
Determine the maximum number of linearly independent vectors.

Solution. Let's form a vector equation similar to (2.3) as follows:

a1-§1+a2§2 +0{3§3 +a4§4 =0 (24)

This equation is equivalent to the next system of equations:

o, +2a,+5a;+1a, =0 o
3o, —a, +az+1a, =0 B o
S5a,-3a, —a;+9a, =0 or A-a =0, where a = 2
-, +da,+7a,+a, =0 *3
-2a,+3a,+40,+3a, =0 g

Let us determine the rank of the matrix of this system:

1 2 5 7
3 -1 1 7
A= 5 -3 -1 9
-1 4 7 1
-2 3 4 3

Note that the columns of the matrix A coincide with the coordinates of the
vectors a;,a,,as,a,,as . So, further, we will study the linear independence of
the system of vectors (i.e. finding the rank of the system of vectors) we need to
compose the matrix A, the columns of which coincide with coordinates of the
vectors.

Let's perform elementary transformations over rows of the matrix A to
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convert it into the row echelon form, i.e.

n-(=3)+r=r L2 s
0 -7 -14 -14| |n/(-7)=r,

TTL=N 1y 13 26 —26]- r3/(~13)= 13| ~
4T =T 0 6 12 8 | [n/2=r,
Nn-2+rg=rs 0 7 u 17

1 2 5 7 10 1

01 2 2| [p-2rn=n 0 1 o /(-2)=ry
~10 1 2 2|~|np-3n=r~ 000 - ~rh/3=r14 |~

0 3 6 4 g —2r) = Iy 00 0 n-rn=rn

0 7 14 17

1 010
~l0 1 2 2| = RgA=3

0 001

Therefore, only 3 vectors are linearly independent, for example, a;,a,,a,

. Now we can write down the corresponding homogeneous system of linear

equations with respect to unknown coefficients:

o1 =—03 o1 =—03
oy =-203—2a, = oy =—203
ap = 0 ap = 0

Thus, the linear combination of the given four vectors takes the form:
(— ag )gl - 20[352 + 0(353 =0.

or

a;+2a,—az3=0 = |ag=a;+2a,

Example 2.11. Prove that vectors g; = (1,-3;2), G, = (41;1) g5 =(2;4;-1)

form a basis and decompose the vector X = (3;,~2;3) in this basis.
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Solution. Suppose that we have proved that {g; };_;5 is the basis. Then
X = (x1; X2 X3 ) = (3;—2;3) can be represented by a vector equality:
X=00;+a0; +a303 (2.5)
The equation (2.5) corresponds to the SLAE, which can be written in
matrix form as follows

GX, = X (2.6)

]

g
where G is a matrix whose columns coincide with the coordinates of vectors

d1,02,93, and X is a matrix-column, and the vector X, is a vector of unknown

coefficients ¢; (i=1,2,3) in (2.5), i.e.

Xg =0y |.
a3
Let’s find the solution of the system of equations (2.6) by using the

Jordan-Gaussian method:

1 4 2| 3 1 4 2| 3
31 4l_2]- n-3+rp="r| 0 13 10! 7 |- r3-2+1 =1
> 1 1| 3 r3—21 = Iy 0 _7 _5|_3 r(-1)= 1y
1 4 2|3 1 4 2|3 1 4 2|3
~|0 =1 0|1|~|rp-7+r3=13~|0 -1 0| 1|~|0 1 0|-1
0O 7 5|3 0 0 5|10 0 0 1] 2

As the rank of the matrix is RgG=3, the vectors {g;};_i3 form the basis.

Therefore, following the Gauss method, we can find the unknown coefficients in
the form:
as =2; o =-1; aq =3—40!2 —2053 =3+4-4=3; aq =3.

Thereby, the given vector X can be decomposed in the basis {gi}izf3 as

follows:
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X =30; -0, +203.
That is, if the basis is given by the system of vectors G =(g;;05;J3), then the

vector x in this basis X, = (ay;a,;a,) has coordinates Xy =(3:1;2).

In general case, if the basis is given by vectors @;,3,,..,0,, and G is a
non-singular square matrix constructed with columns of coordinates of this
vectors then this matrix is called a matrix of the corresponding basis. Hence,
any vector X in this basis can be defined as:

X = GXg (2.7)
If another new basis H is specified in this space such that hy ,h,,..h, are linear
independent vectors, and H is a matrix of the corresponding basis H, then,
similarly to (2.7), the same vector X can be represented in the new basis in the
form:
X = HXy (2.8)
For the same vector, expressions (2.7) and (2.8) are equal. Then, we can write
down the transition of the vector coordinates from the “old” basis G to the
“new” basis H as follows:
HX, =Gx, = X,=H"-GXx, (2.9)
The last formula determines the relationship between the coordinates of

the vector X in the "old" and "new" bases.

Example 2.12. Two basis G=(g;;g,) and H=(h;h,) are given.
Coordinates of the basis vectors are §; =(3;4), @, =(-12), and hy = (1),

h, =(54) respectively. Find the coordinates of the vector X in the new basis H

(i.e. Xy ), if its coordinates in the basis G are Xg = (3;-2).

Solution. In accordance with the formula (2.9), we have to find:
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X, =H" GX,

Construct the matrices H and G, respectively, as follows:

1 5 3 -1
H = : and G =
1 4 4 2

Then, find the inverse matrix H *:

By multiplying the matrices, we get

DR U by e

Finally, the product of the three multiples gives the required coordinates of the

vector in the new basis H:
3 4o 8 14\ 3 -4
XH = H 'GXG = = .
-1 -3)\-2 3

Sometimes the relation linking an “old” basis G=(J,;d,;..;d,) and a “new”
basis H = (n,;h,;...;h,) are known instead of their basis vectors {g;} and {h},
that is an appropriate system of linear equations is given
O1 = tiahy +to1hy +. 4 tyhy
Ty =ty +toohy +.. 4+t oh,

(2.10)
\gn = tlnﬁl +t2nﬁz +... +tnnﬁn
In the matrix form, the system (2.10) can be rewritten as:
G=H-T (2.11)

where
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t11 t12 e tln
t, t, ..t
T — 21 22 2n (2.12)

1:nl tn2 t

n
Definition. The matrix T is called a transition matrix from the basis H
(said to be a “new” basis) to the basis G (said to be an “old” basis).
One can notice the following:
1. The above transition matrix T may also be viewed as the matrix whose
columns are, respectively, the coordinate column vectors of the “old”

basis vectors {gi} relative to the “new” basis H; namely,

T=({§1}H’ {gz}H’ " {qn}H)

2. Analogously, there is a transition matrix C from the “old” basis G to the
“new” basis H. Similarly, C may be viewed as the matrix whose columns
are, respectively, the coordinate column vectors of the “new” basis vectors

{ﬁ,} relative to the “old” basis G, i.e. C = ({ﬁl} , {ﬁz} R {ﬁn }G)

3. Because the vectors @,;0,;...;0, in the “new” basis H are linearly

n

independent, the matrix T is invertible. Similarly, C is invertible due to the
same reason for the vectors h;h,;...;h . In fact, we have that if T and C
are the above transition matrices, then C =T .

Taking into account the relation (2.11) we can rewrite the relation (2.9) as

follows:

paY
T

I
I
|
T
—
X

. G:>)_(H ZT')_(G (213)

=ldentity marrix
Thus, the coordinates of the vector in the "new" basis H via its coordinates
in the "old" basis G are computed using the transition matrix T from the “new”

basis to the “old” basis.

Example 2.13. The relationship between the two bases G and H in R®

space is given by the system:
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gl =4h1 —3h2 + h3,

g2 = 2h1 +5h2 —3h3,

g3 = 7h1 + 6h2 + 2h3
Find the coordinates of the vector X in the basis H, if its coordinates in the basis
G are known as Xg = (- 3;-2:1).

Solution. Since Xy =T - Xg,

4 2 7
where T =| -3 5 6, we can write
1 -3 2

S0, Xy = |- 9,55}

Let us consider other types of linear spaces.

Let K be a space of polynomials X=x(t) of degree not higher than 4:
degx(t)<4, ie. K is a space of polynomials of the form
X(t)=C+Cyt +Cot? +Cot> +Cyt*, where C;,(i=14)eR, (i.e. C; are the real
numbers). Assume that the operations of addition and scalar multiplication are

determined in the way usual for the linear space. Then these functions can be

considered as vectors of the form: x ={C,,C,,C,,C,,C,}, i.e. they are elements
of R® space, where the role of the basis plays the functions g, =1; g, =t;
g3 =t2; g =t3 and g5 =t*.

However, as a basis we can also take linearly independent polynomials of
the other forms, eg. h =1; h,=(t-a); hy=(t—a)*; hy=(t-a);

hs = (t—a)*, where a is any real constant.
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To find the coordinates of the vector X in the basis H, we can use Taylor's

formula in the form of the fourth-order expansion:

x(t)=x(a)+%@(t—a)+%(!a)(t—a)2 +%@‘)( s X'Vm(a)( _a)

Example 2.14 A polynomial X =6—5t +1%-3t3 + 4t s given. Find the
decomposition of this polynomial in the basis g; =1; g, =t+2; g3 = (t+2)?;
94 = (t+2)%; g5 =(t+2)*.

Solution. We present this polynomial in the form:

X(t)=ay +a,(t+2)+as(t+2)* +a,(t+2)° +ag(t+2)*
To find the coefficients of this decomposition we use the Taylor’s formula with

known constant a = —2. Then, we calculate the required values

X(~2)=6+10+4-3-(-8)+4-16 =108
20 +24 +64

x'(t)=-5+2t-9t* +16t°|_,=-5-4-36-16-8=-173
X"(t)=2-18t +48t°|,_, =2+36+48-4=230
x"(t)=-18+96t|,_, =—18-192=-210

x" (t)=9

According to Taylor's formula we obtain that:
(0)=76 1730+ 2)+ 22 (04 2 - 22 (0+ 2 421+ 2)° -

that is the coordinates of the vector in the new basis are
= {76,-173,115;-35;4}.

2.4. Subspaces
Definition. A set of elements L € R is called a subspace of linear space R

if it is closed with respect to linear operations:
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1°.vxyel, 3(§+9)€L

2°vxel and 2<R(C), =a-xel

It is easy to verify that the subspace L, which satisfies conditions 1° and 29, is
also a linear space.

Indeed, all the axioms except for the axioms 3° and 4° are true as they are

true VX eR.
Regarding the axioms 3° and 4° they follow from the consequences of the
axioms:
0-Xx =0and—-1-X¥x = — X
Indeed using that 1-Xe L, we can choose 41=0, then 0.}:5, el if xel

and if A =-1, then one can obtain that ~1-x :—;<, —xel if X € L. Thatis L

is a linear space.

The simplest examples of subspaces are the following ones:

1)  Zero space, i.e. space that consists of only one 0-th element.

2)  The whole space R isalsoa subspace of itself.
Both of these subspaces are called improper space

3)  Subset {P,(t)} of all algebraic polynomials of degree not exceeding

ne N is a subspace in linear space Cp,p] of all continuous functions x(t), on

the segment [a,b]..

4)  Any plane P, which passes through the origin, forms a subspace of three-
dimensional space RS
Indeed, this plane can be considered as a plane formed by two vectors X1

and X2, which come from the origin (straight line, if X1 | Z). Obviously that

Veay and a, € R vectors belong to the plane, i.e. a1 X; +ap X, € P as shown in

44



Fig. 2.1.

Fig. 2.1

2.5. Linear Spanning Set (Span)

Let’s consider a vector space V over the field K and a set of vectors

Ex_éx_n{ which belongs to this space V. If every vector in V can be
expressed as a linear combination of Xj@% then it could be said that this

set of vectors Xq, Xo,..., Xy, form a linear spanning set of V.

_—

Definition. The set of all linear combinations aq Xy +a) Xy +..o0 Xy

where ag; (i = 1,m) are arbitrary real (or complex) numbers in K is called a linear

spanning set (or a span) of elements {Xn}izm and is denoted as

L(xl,xz,...,xm)or span(x;, X,...., X, ).

For a span L(xl, x2,...,xm) the axioms of linear subspaces 1° and 2° are

valid. Thus, any span is a subspace of linear space. Sometimes the span is called

—_—

a subspace, which is generated by the elements ;i x? Xm -

Definition. The dimension of a span is equal to the maximum number of

linearly independent elements among the elements x?x?% forming the

span L(xl, x2,...,xm).

Definition. If a span L(Zgﬂ):v then we say that ggxm

spans V and we call V finite-dimensional. A vector space that is not finite-
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dimensional is called infinite-dimensional.

Example 2.15. Consider a subspace which is generated by solutions of

homogeneous SLAE with m equations and n unknowns.

In matrix form, this system is written such as AX = 6, where

a1 Q2 ... dqp

a a .eooa
A= 21 22 2n

anl an2 i ann

One can show that the set of solutions M of the homogeneous SLAE forms a

subspace.

— —

Indeed, if Xx1eM , ie. Ax;=0 and X2eM , ie. Ax,=0, then

Xy + X, € M, because A(x1+x2):Ag+Ag:6. Similarly, if xeM,

—

Ax =0, then @-X1 € M ,Ya eR, because Alax)=c - Ax =0.

To find the dimension of this subspace, we have to determine the number
k of free variables in the system and the rank of the matrix RgA. Then,
according to the Kronecker-Kapelly theorem, dimM =k =n -RgA. At the same

time, the fundamental system of solutions is a basis of this subspace.

Example 2.16. The subspace L is formed by vectors for which the
following equations hold: X, =—X;, X5=2X3, X4=X,. Determine the
dimension and basis of this subspace.

Solution. To find the dimension and basis of the subspace, we write an
appropriate system of homogeneous equations

Xp+ X, =0
2X3 — X5 =0, or, in the matrix form as Ax=0
Xo —X4 =0
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Solving this system of homogeneous equations with the Jordan-Gaussian

method we can write:

1 1 0 0 0 1 0 O 1 0 X1 =—X4
A=|0 0 2 0 -1 ~[001 0 -1 0|=ix=x
0 1 O —1 O n-r3—n O O 2 O —1 2X3:—X5
I <13

Therefore, RgA=3; and dimM =5-3=2.
Since there are only two free variables, for example, X, and Xs. Then the

fundamental system of solutions looks like:

X1 X9 X3 X4 Xg

21—11010

e_z’ 0 |0 |-0510 1

That is, the following vectors can be chosen as basis:

-1 0

1 0
e=| 0| ande=|-05]

1 0

0 1

Therefore, any vector X (the system solution) can be presented in the form:

-1 0
1 0
x=C,e+C,e,=C/| 0 |+C,| 05,
1 0
0 1

Example 2.17. Subspace L R is given by the SLAE:

3)(1 + X5 —2)(3 —5)(4 +3X5 =0
2X1 +3X2+X3 —2X4 —4X5 =0
7X1 +7X2 —9X4 —5X5 =0

47



Find the dimension and basis of the subspace.
Solution. Let's build a matrix of this system and determine its rank.

31 -2 -5 3 770 -9 -5

A=|2 3 1 -2 -4 ~|2 3 1 -2 -4~

770 -9 -5}, . \770-9 -5
(770—9—5] 110 -2 _3

- - - 3 -

23 b -2 -ty 2831 -2 -4
110 -2 2] [10 -1 -8B B
- AR 77|
011 2 Bllor 1 28
77 7T

RgA =2, as a result, the number k of free variables is equal to k =5-2=3. If to
choose X3, X4 and Xg as free variables, then the variables x; and x, take the

form:

4 18 13 13
X2 =—X3—?X4 +7X5 and Xl =X3 +7X4—7X5.

To find the basis vectors (fundamental system of solutions) we give arbitrary

values for the free variables X3, X4 and Xs and get the corresponding values for

X, and X, as follows:

X1 X9 X3 X4 X5

- |1 -1 |1 |0 |0

€
513-4 0 |7 |0
el 713118 |0 |0 |7
3

Therefore, the vectors a,g,e_é form the basis, and any vector the given linear

subspace (as a general solution of the homogeneous system) can be presented in

the form:
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1 13 ~13

-1 —4 18
X=Cie;+Cpey +C363=Cy| 1 [+Cy| O |+Cs| O

0 7

0 0 7

Further, let’s consider an inverse problem, i.e. let the subspace be given as a

span of vectors. We need to build a SLAE that defines this subspace.

Example 2.18. A subspace L c R* is given as a span formed by the
vectors g; ={,0;2: -1}, g, =1{3-21:0}, g3 ={-2-32}. Write down a
SLAE corresponding to this subspace.

Solution. First, determine whether the vectors are linearly independent.
For this purpose, we construct the matrix using the coordinates of the vectors

written as rows of the matrix. Then, we convert the matrix into a row echelon

form:
1 0 2 -1 1 0 2 -1
1 0 2 -1
3 -2 1 0 ~lo -2 -5 3|~ -
0 -2 -5 3,
1 -2 -3 2 -3y (0 -2 -5 3 7,

r3—n

102 -1
“lo1 2 23
2 2

Since the rank of the matrix is 2, one can say that among the three vectors

forming a linear space, only two are linearly independent. That is, dim L=2.
These two obtained vectors are hy = (1,0,2,—1),52 = (0,1,2,—2), and they can

be taken as a basis.

The general solution of the SLAE takes the form:
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X1= Cl’

0
1 1 X, X2=Cy,
z ~ — 0 5 X, 5
x=Ch +C,h, =C, i +C, > 171 . = X3:2C1+EC2’
-1 3 X 3
2 X4:—C1—EC2.

Excluding constants Cz and C, from the resulting system, we have:
3)
Xo2=2X1 + —Xo,
3T LR
Xg=—X1 —=Xo.
4 17572

Thus, we have the following system of equations:

5
2X1+§X2—X3=O A% + 5%, —2%3 =0,
2% +3Xy +2X4 =0.

—X1—§X2—X4 :O

2.6. The Sum and Intersection of Subspaces

Definition. Let Ly and L, be two subspaces of linear space K. The union
(sum) of these subspaces L; and L, is called the set of all vectors (elements) of
the form X + 9 where X e Ly, 96 L,. The sumis denotedas L, uL, or L +L,
,where L +L, =X +y|xel,andyel,].

Definition. Let Ly and L, be two subspaces of linear space K. The
intersection of these subspaces L; and L, is called the set of all vectors
(elements) that belongs to Ly and L, simultaneously. The intersection is

denoted as L, N L,, whereL, L, :{\7\ Vel and Ve Lz}.

Theorem 1. The intersection L, (L, is a linear subspace.
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Proof: Let Ve L, NL,, then AV e L, because L, is a linear subspace,
similarly Ave L, = Ave(LNL,).
Let 3&,96 L, N L,, then 5&,96 L4 and ;<,§/e L, , but then §+§/e Ly (since

L, is linear space), X+Yye L =>x+yelLNL,.m

A similar theorem is valid for the sum of subspaces.

Theorem 2. The sum L, + L, of linear subspaces is a linear subspace.
Proof. Let \7:;<+§/, where X € L, ye L,, then /1\7:/1;(+1§/ , and

Ixely, Ayel,. m

Theorem 3. The sum of the dimensions of subspaces L; and L, of a

finite-dimensional linear space R is equal to the sum of the dimensions of the
intersection of these subspaces and the dimension of the sum of these subspaces,
e
dimL, +dimL, =dim(L, NL,)+dim(L, +L,),
or
dim(L, +L,)=dimL +dimL, —dim(L, NL,)
Proof. Let us denote intersection of L; and L, as L,=L,(L,. The sum
of L; and L, let us denote by L (L=L,+L,). Suppose that L, is k-

dimensional space. Let us choose the basis in it:
€1, €2,..., €. (214)

Let a supplement basis (2.14) to the basis in subspace L; be as
€1, €2,..., €, 01, J2,..., 0 (215)
and to the base in subspace L, be as

€1, €2,..., €, fl, fz,..., fm (216)
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Consider a set of elements:
O1, 92,5 01, €1y €2,eens &, 1, Touis, Ty (2.17)
We can prove that the elements (2.17) are linearly independent.
Assume that some linear combination of elements (2.17) is a trivial:
101+ a9 +...+ 9 + S8+ S i+ ymfn =0, (2.18)
or
o001 +0ao0s +...+ 9+ e +..+ e =1 fi— = vm - (2.19)
The both left and right parts of the equation (2.19) belong to the intersection L
of the subspaces L; and L, because the left part is an element of L;, and the
right part is an element of L, . However, the right-hand side of (2.19) is a linear
combination of elements (2.15), i.e. there are arbitrary numbers 4, A,,..., A4
such that
-t =yt —i =y =48+ + A8 (2.20)
Due to the linear independence of the basic elements (2.16), the equality (2.20)
is possible if and only if all the coefficients y;,y5 ,..ym:%4 -4 €qual to zero.
Using (2.19), we get that
091t apgp +..t Q)+ freg +..+ fre =0 (2.21)
Due to the linear independence of the basis vectors (2.17), the equality (2.21) is
possible if and only if all the coefficients oy,a5,..,0y,5;,..0c = 0.
Thus, we found that the equality (2.19) is possible if and only if all the
coefficients aq,..,0q,81 Pk v1+ym are zero, which proves the linear

independence of the elements (2.17).

We have proven that any element x of the sum L is some linear

—

combination of elements (2.17). Indeed, consider the element X, which is

| k m
represented as X = @;g; + > Bjej + 2 7k fk . The first two terms coincide
i=1 j=1 k=1
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with the element x; €Ly, and the last term is equal to X, e L,. Whence it
follows that x e L,+L,. That is dim(L,+L,) =1+ k + m. Taking into account that
dim(L,NL,) =k, dimL=Il+k, dimL,=m+k, we get the following
expression:

dim(L, + L,)=dimL, +dimL, —dim(L, NL,).

The theorem is proved. &

We have already mentioned that the intersection of two subspaces is all

the vectors shared by both. If there are no vectors shared by both subspaces L1

and L2, meaning that L, NL,= @, the sum L, +L, takes on a special name.

Definition. The space L is a direct sum of L; and L, and is denoted as
L ®L,,if LLNL,=8. That is an element xel can only be represented in the

form X = ?1’+ X2, where ;ie Ly, Xy €Ly,
In this case, theorem 3 leads to the formula:
dim(L; ® L, )=dimL, +dimL,
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Chapter 3. LINEAR OPERATORS

3.1. Concept of the Linear Operator
Consider the linear space K over the field of real numbers R.
Definition. Let D be some set of elements X of linear space K, i.e. D c K.
If to each element X in set D there corresponds a certain element of space K

({/ e M < K ) in accordance with a rule A, then we can say that the operator A

Is specified, and it maps the elements from set D into the elements of set M.

The last statement can be written in the form Ax = 9

In a particular case, if K is a set of real numbers, then we deal with a real-value

function y= f(x). That is, the concept of the linear operator A is a

generalization of a function definition as drawn in Figure:

Fig. 3.1.

The set of all elements X € K , to which the operator A is applied, is called

the definition domain of the operator and is denoted as Da. In particular, Da can
coincide with the whole spaceR :
The set of all elements Y/e M is called the range of values of the

operator A and is denoted as A 4.

An operator A is said to be given if:

1. adefinition domain Da is specified

2. a rule (law) according to which VX e D, there corresponds a certain
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element (vector) 9: AX is known

Two operators A and B are equal if:
1. DA = DB

2. Ax=Bx, K VxeD

Example 3.1. Let K be some space, and let the operator A be defined such

that AX = 0, Vx e K . Such operator is called a cancellation or null operator.

Example 3.2._Let K be an arbitrary space. The operator specified as
AX :;<, VX e K, is called identity operator.

Example 3.3. If the operator A is defined as AX = k)?,V)? e K, keR, then
it is called the similarity operator.
That is, the application of operator A to any element of space stretches

(compresses) this vector k times.

Example 3.4. Let K =Cp,p] andx=x(t), Ax=x'(t). In this case, we will

: d : : .
write that A= at and A is called the differentiation operator.

Next, we consider operators that are given in the whole linear space L, and

the range of values of the operatoris Ay c L.

Definition. An operator A given in a linear space is a linear operator if it

satisfies the following conditions:
1. Al + %)= Axg + Axy , Vg, %p € L
2. A(a;()zaA;(, Vx el
For example, we show that the differentiation operator is linear. Indeed, if

Ax = X'(t), then we can write:

AN ’ , , d d . .
1) A(x1+x2):(x1+x2) :x1+x2:axl+ax2:Axl+Ax2
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2) Alo) = (ax) :axf:a.%x:a.A;

3.2. Matrix Representation of the Linear Operator

Let a linear space L have dimension n, i.e. dimL=n. We choose some

basis e;,e,...,e, InL. Then Vx e L we have:

—_—

_ n
X= ) X€ (3.1)
k=1

Suppose that a linear operator A is given in this space. We apply this
operator to both the sides of (3.1):

- n n _
Ax:ALZxk-ekj:Zxk-Aek (3.2)

k=1 k=1

Thus, it follows from (3.2) that to specify the operator A it is enough to
specify its value in the basis of vectors, i.e. Ae?, Ag,..., Aa :
Since {Agi}i:m are vectors in space L, they can be uniquely represented

in the form of decomposition in the basis of this space, i.e.
Ael =d116 + a6y +...+ a8

Aey =317 +a9r€s +...+ 306,

(3.3)
Aa = alna T aZnQ Tt anna{
The relations (3.3) can be rewritten in the compact form as
—_ n — _—
Aek = Zaikei,k :l,n, (34)

k=1
where &;, are the i-th coordinate of the k-the vector Ae? in the base {ey }szn-

Substituting (3.4) into (3.2), we obtain:
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A_X’=£§xk Zn:aik €j= i(ixkamé} i(iamxka}
k=1 k=1

=1\ k=1 i=1\ k=1

(3.5)

On the other hand, the vector A)?, which is a result of the action of the

operator applied to, has coordinates y,,y, ...y, . in the base {e f, i, i.e.

S
AX = Zyiei .
i=1

Comparing (3.5) and (3.6), we obtain:
n . n n .
2 Yiki= 2| 2 aikXk [8i-
i=1 i=1\k=1
Due to the uniqueness of the decomposition, it follows from (3.7):
n _
Yi = Zaikxk ,Vi:].,n.
k=1
That is
Y1 = allxl + a.12X2 +...+ alan
Y2 =ap1X +axXo+...+8xnXp

The matrix of the system (3.9) is as follows:

di1 dgp ... Qqp

a a eooa
A= 21 22 2n

anl an2 ae ann

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Matrix (3.10) following from (3.9) is called a matrix of the linear

operator A in the basis {ey }, i -

If matrix (3.10) is known, then, using formulas (3.3), we can find the

vectors {Ae_{} and, as a result, we can find the vector AX by formula (3.2).

That is, assigning the operator matrix is equivalent to assigning the
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operator itself. Conversely, by knowing the operator A and applying it to the

basis vectors {ei }, we can obtain the matrix of the operator A using the formula

(3.3).

Conclusion. If a specific basis is given in a linear space, then, any matrix of the
n-th order corresponds to a linear operator in this space and vice versa each

linear operator in a linear space can be represented by a certain square matrix.
The system of equations (3.9) means that if {X;};_- and {y;}i_i, are

coordinates of the vectors X and AX in the basis, respectively, then, the
coordinates of the second vector can be obtained by using a linear
transformation (LT) with the matrix, which represents the matrix of the linear
operator A in this basis.

That is, the application of a linear operator to a vector implies the
application of a linear transformation to its coordinates.

In this respect, the concepts of linear transformation and linear operator

are equivalent.

Example 3.5. Let A=0. Find the matrix of this operator. Since A§=0,
we have
Aa:O-a+O-£+...+O-a,
AQ:O-Q+O-e_2>+...+O-e_n>,

Ae,=0-¢+0-e5+...+0-¢,.

Thus, the matrix of the null operator is a zero-matrix:

0O 0 .. O

0O 0 .. O
A= .

0 O 0
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Example 3.6. Let A=FE , i.e AX=X:
Ae =g =1-e+0-e, +..+0-e,,
A@:Ez’zo-51+1-§+...+o-e_n’,

Ae,=en=0-¢,+0-e, +...+1-¢,,

that is, the operator matrix has a form:

1 0 ... O
01 .. 0

A= =1,
0 0 .. 1

Thus, the matrix of the identical operator is an identity matrix.

Example 3.7. Let A be the rotation operator in the plane X;0x,, which
rotates an element by an angle ¢. Find the matrix of this operator in the natural
basis {i, j} (Fig. 3.2).

Solution.

i'= Aizaéﬁﬁ:cow-ﬂsingo-]

j'=Aj=0C+CD=-sing-i+cosp-

Therefore, the rotation operator has a matrix in the

cosp —sing
sinp cosg )

Fig. 3.2

form: A= [

Example 3.8. The operator A is given in space E® . Geometric vectors are
determined by the formula AX = [5,5&]—352. Prove the linearity of the operator

and construct the matrix of the operator in the natural basis r]E :

Solution.
1. Let us prove the linearity of this operator. Let x,y be arbitrary

elements of space E3 then
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—_ —

Alx+y)=lax+y]-3x+y)=[ax]-3x+[a.y|-3y = Ax+ Ay
A(a;()z [5 a;(J— B(a;(): a[a, ;(J— a -3X = aAX
That is, the given operator is a linear operator.

2. Choose as a vector a the following vector: a = {1,-2,2}.

TR T ¢
pi=lail-si=h -2 2-3i={22)-3i={-322),
1 0 O
]k
Aj=[ajl-3j=1 -2 2-3j=-2i-3j+k={-2-31},
0 1 0
]k
AR =[ak|-3k=[1 -2 2/-3K=-2i-]-3k={-2-1-3].
0 0 1
Then the matrix of the operator A has the following form:
-3 -2 -2
A=l 2 -3 -1].
2 1 -3

Example 3.9. Find the matrix of the operator in the natural basis that

corresponds to the mirror reflection of the point C(x1, y1,z1) with respect to the

plane 2x—-y+z =0 (Fig. 3.3).

Solution. From the equation of a given plane 2x—y+z =0, we obtain the

normal vector n = 1{2,-11}.

The equation of a straight line passing through the point C and normal to

X=X _Y=V1_274 _,
-1 1

In the parametric form, these equations are rewritten as:

the plane is
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X=2t+ X%
y=-t+y
Z=t+79
The point A of intersection of the plane and the

straight line can be found as follows:

A +2% +t—-y, +t+2; =0

Fig. 3.3

6t=y1—2X1—Zl

1
tzg(h —2x -179)

1 1 1 1
XA =§(Y1—2X1—21)+ 4 =3%+3N-2h

y ——l(y 2% —71)+Y 1 +§y i1y
AT T T n )t =R et e

z —E(y — 2% — 1)+ 2 _ -1y +1y +27
AT g1 1T a)Ta s T T eI T ea
Let us find a point B symmetric to point A with respect to the given plane,

knowing that A is the middle of the CB (Fig. 3.2):

XC +XB. 2 2 2 1 2 2
XA: 5 ,XB =2XA—X1:§X1—X1+§y1—§zl:—§X1+§y1—§zl

yg =2Yp—Y —Ex +§y +—-21— Y1 ==X +Ey +12
BT AYATN T ST T AT N T AT TR

1 2
Ig =2Ip -y =—=Xq+=Y1+=-Z1 -1 =——X +=Y1 +=2
B A~ L 313Y1311 313)/131
Therefore,

A;(—fl—(—lx +gy —-—=Z 'gx +gy +lz '—gx +1y +gz j—
31 1 1,13131,313131
:%(—x1+2y1—221;2x1+2y1+zl;—2x1+y1+221).

To find the matrix of this operator in natural basis {T]E} we find
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- 1 = 1 = 1
Ai :5(_1;2;_2), AJ:§(2;2;1), Akzé(—z;l;z). Then the matrix of the
operator has a form:
-1 2 -2
1
A== 2 2 1
3
-2 1 2

Example 3.10. Check the linearity and compose the matrix of the

differential operator A given in the space of polynomials P(t). The degree of
polynomials isP(t)<2, and the basis is formed by a set of functions:
1,(t—1),(t =1)*. The operator is defined in the form: AP(t)=t?-P"(t)+3P(t).

Solution. The polynomial is not higher than the second degree as a result
it has a general form P(t)= ay +ast +a,t?.

First, we prove the linearity of this operator.
Let Py(t),P,(t)e L, then:

a) AR +P)=t2- (A +PR,) +3(R +P,)=t?P +t2P) + 3P +3P,=
=t?p" + 3R (t) + 2P, +3P,(t)= AR + AP,

AP (t) AP, (t)

by AlP()=t2- ()" +3(aP(t)=t?P" (t)+ 3P(t))= o - AP(t)

Indeed, the operator is linear.

To obtain the matrix A of the operator in the basis 1,(t —1),(t—1)?, we

apply this operator to each basis vector:
Al)=t?-0+3=3={3,0,0}

Alt—1)=t?.0+3t=3=1{0;3,0}
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Alt—1)* =t? .2+ 3(t -1)? :2(t2 ~2t+1)+4t-2+3(t-1)% =

(t-1)°
=5(t —1)° + 4(t —1)+ 2= {2;4;5}.

Therefore, the operator matrix has a form:

A=

O O w
O w O

2
4.
5

Example 3.11. Construct a matrix of an integral operator acting in the
space L, given by a set of the functions: 1,cost,sint. Check its linearity if the

operator is given as

/2
Ax(t)= [sin(t+4u)x(u)du

Herein u is an integration variable.

Solution. Let’s prove the linearity of the operator.

g AR«Y0)- ”fsin(t + au) &)+ y()du = ”fsin(t +4u)- ¥{u)du +
7/2
+ [sin(t +4u)- y(u)du = Ax(t)+ Ay(t)
0

/2

b)  Al-x(t)=a [sin(t+4u)- x(u)u = a - AX(t)
0
To find the operator matrix, we apply operator to the basis vectors
1,cost,sint.
/2 1 2 1
A-l= jsin(t+4u)du:—zcos(t+4u :—Z(cost—cost)zOz{O;O;O}.
0

0
72 17[/2
A-cost=[sin(t+4u)-cosudu =5 [(sin(t +5u)+sin(t + 3u))du =
0 0
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NN

=l(—1cos(t+5u)—lcos(t+3u)) _ 1 1cos(t+§7zj—icost+
2\ 5 3 2\ 5 2 2

0

1 3 1 1(5 1. 1. 1 2 .
+—CoS{ t +—7 |——cost |=—| —cost ——sint +—sint |=——| cost + —sint |=
3 2 3 2\ 6 5 3 2 15

~Jo-3-2}
2 15
72 72

A-sint = jsin(t+4u)-sinudu=% [(cos(a + B) + cos(a — B))Hdu =
0 0

NN

7/2
[ (cos(t +5u)+ cos(t +3u))du :%Gsin(t+5u)+%sin(t+3u)) =
0

0

1. (. =) 1. . 2 1(1 1. 2
=—|=SIN|t+— |——=sInt——cost |=—| —cost ——sInt — —cost |=
2(5 ( 2) 5 3 j 2(5 5 3 j

:l(lcost—lsint) O—l i}
2\ 15 5 3010

Thus, the matrix of the operator has a form:

I\JIH

0 0 0
A-lo -2 1|
2 30
11
15 10

Example 3.12. Verify that the function f is a linear operator in a linear
space R2, if for any X =(x, X, )€ R?, the function is given by relation
f(x)=(xp — X,3% + Xp).
Solution.

a) Let’s take two different elements of the space X=(X1,X2) and

y=(y1,Y2)€R?. Then
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fFx+y)= (0 +y1)(x2 +y2))=
=((x2 + Y2) = (¥ + ¥1).304 + Y1) + (X2 + ¥2)) =
= (X2 + Y2 =X — Y1,3% +3y1 + X2 + Y2 );
)+ f(y)=(x2 —x0,3% +%2)+ (y2 = V2.,3%1 + y2 )=
=(Xp =Xy + Yo = ¥2,3% + Xo +3y1 + ¥2),
so, we have that f (x +y)= f(x)+ f(y).
Further, f(ax)= f((axq,ax;))=(ax, — axq,3a% + axy),
off (X)=a(Xp — X1,3% + Xp ) = (axy — axq, 3% + x5 ),
S0,
f(ax)=af (x).

Thus, f is a linear operator in the linear space R?.

Example 3.13. The linear operator A has a matrix in the natural basis of

the linear space of polynomials P(t), which are not higher than the first order:

2 4 i
A:(3 1), g(t)=t—3. Find the operator Ag(t).

Solution. The natural basis of the linear space of polynomials P(t) not

higher than the first order is presented by the functions (1, t). The vector g(t) in

this basis has coordinates X = (=3, 1). Then

sl 33

So, Ag(t)=-2-8t.

3.3. Matrix Transformation of a Linear Operator with Changing a
Basis
Suppose that a linear operator A is given in an n-dimensional linear space.
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That is
AX=y.
Let's choose the basis {g i }j:fn’ in which the operator A is represented by
the matrix Ag . This matrix is constructed as a result of applying the operator A
to the basis vectors {g;} and their subsequent decompositions in the basis {g; },
e
AG;=2110; +a107 + ...+ 8y O

Agy =2a1501 +aJds +...+ay20,

AQp =a1,01 +@2,02 +...+apn O

Hence, we have

a1 Ao ... Qqp
AG B dp1 Aoy ... dyp
anl an2 i ann

Suppose that H is a new basis in this space. We need to find the matrix
that represents this operator Aw in the new basis H.
Let’s establish the link between the “old” and “new” bases by the
following relations:
01 =t11h1 + t21h2 +... +tn1hn

g =tiphy +tpohy +...+tohy

—_—

g_r{:tlnﬁi +t2ng +.. 4+t hy,
One can rewrite this system of equations in the matrix form as
G=HT,
where G =(g,,9,,...9,) and H=(h, h,, h,,---h,), and the transition matrix T

from basis H to basis G is determined by
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t, t, .. t,
T t,, t, .. t,
t, t, . t,
Taking into account that
Yo =Agxc ,and y, =Tyg, (3.11)
we get
Yu =TAGXG. (3.12)

The vector ;<G in the basis G is related to the vector ;<H in the basis H via

the transition matrix as follows (2.13):
XH :T;(G, — xg =T *Xn (3.13)

Substituting (3.13) into (3.12), we obtain the expression

—

Yy =TAGT HxH.

Thereby, the matrix representing the operator with changing a basis (change-of-

basis matrix) from the “old” basis to the “new” basis is given by the formula:

Ay =TAGT (3.14)

Example 3.14. Let the linear operator be given in two-dimensional space

with the basis g, = {-2}, g, = {2;-3}. The matrix of the operator in this basis is
1 0) _. . :
Ag = ( 5 J . Find the operator matrix in the natural basis.

Solution. Following the task conditions, the matrix representing the

S 1 2
operator in the basis g,,9, is G =( 5 3}.

The operator matrix in the natural (new) basis of the vectors i =(L0),
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3 10
j = (0;1) takes the form: H =1 = 0 1)

The relationship between the old and new bases is defined as
9,=1-2j, g,=2i 3],
. . 1 2
then, the transition matrix is T :( ) 3}.

Find the inverse matrix T 1. Since the determinant of the matrix T is

-3 -2
detT =1, we have T1= .
2 1

Finally, in accordance with (3.14), the change-of-basis matrix takes the

O T EE A I R

Example 3.15. Find the matrix of the operator in the basis H, i.e. An, if the

6 -1

operator matrix in the basis G is known as Ag :( 5 5) The bases

G =(g1,9,) and H =(hy,h,) are given by corresponding vectors g, = (3;4),

g, =(-12),h =(12), and h2 = (5;4)

Solution. Let’s find the transition matrix T from basis G to basis H:

G=H .T=T=HG|

3 - 15
where the matrices are given as G = [4 5 j H= [1 4], respectively.

Find the inverse matrix H™*:

4 -5 -4 5
detH = -1, then, HL=- = ,
-1 1 1 -1

Thereby,
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1 -4 5Y\3 -1 -12+20 4+10 8 14
T=HG,=T-= = =
1 -1\4 2 3-4 -1-2 -1 -3
Similarly, find the inverse matrix T

-3 -14 3 14
detT =-10, then, T __ 1 _1
1001 8 10\-1 -8

Following the formula (3.14), the change-of-basis matrix is computed as

Ay =TAGT L =

Ao L(8 14Y6 -1y3 14)_1(8 14Y19 92
H710l-1 -3)\-2 5 -1 -8) 10l-1 —-3)\-11 —68)

 1(152-154 736-952) 1 (-2 -216) 1(-1 -108
10\14 204-92 | 10 7 56 )

14 112 5

Similarity of the matrices

The matrices Ac and TAGT -1 Ay , where T is the non-singular matrix,
represent the same operator in different bases H and G, respectively.

These matrices Ag and A, =T - AT are called similar matrices or A, is
said to be obtained from A, by a similarity transformation.

One of the important properties of such matrices is the equality of their

determinants. Indeed,
det Ay =det(T - Ag -T2)=

=detT - det Ag - detT Lo detT -% -det Ag =detAg.

Thus, the determinant of the operator matrix does not depend on the choice of
the basis.

Theorem. Two matrices represent the same linear operator if and only if
the matrices are similar.

That is, all the matrix representations of a linear operator A form an

equivalence class of similar matrices.
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3.4. Eigenvectors and Eigenvalues of Linear Operators
Suppose that a linear operator A is given in the linear space K over the

field of real numbers R.

Definition. A nonzero vector X e K is called an eigenvector of the
operator A with corresponding eigenvalue A if the following equation holds:
AX = AX (3.15)

It should be noted that a zero vector cannot be an eigenvector, but zero can be an
eigenvalue. Also, if zero is an eigenvalue for an operator A, then A is not a one-

to-one mapping.

Example 3.16 Let A=0.Then ¥xe K
0-x=0,ie
0-Xx=0-X,

that is, the null operator has an "0" eigenvalue:
A=0 VxeK

In this respect, further we will understand that an eigenvector is a nonzero

vector X # 0, such that AX = AX .

Theorem. A set of all eigenvectors corresponding to the same eigenvalue A
forms a subspace L of the space K.

Proof. Let L be the set of all eigenvectors of operator A with eigenvalue A.
Let’s consider two arbitrary vectors x1 and X, . Then, there exist AX; = A% and
AX, = A%,. Summarizing them it gives ARy + AX, =A% + A%, = A(X + X,).
Since A is a linear operator, then A% +AX, =A% +%X,). So

ARy +%5)= A% + %Xp), 0. (X +%y)e L.
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Similarly, we can check the second axiom of subspace. Really, if XeL,

then AX=4X and VYa € R, we have: aAX = aiX, i.e. A(aX)=A(aX), therefore

ax€ L. The theorem is proved. ®

Definition. The subspace of all eigenvectors of operator A, which share the

same eigenvalue A is called an eigenspace denoted as E;(A)

Note. Every linear combination of the eigenvectors with the same
eigenvalue A is an eigenvector of the operator with this eigenvalue. In simple
terms, any sum of eigenvectors is again an eigenvector if they share the same

eigenvalue.

The number of times that any given root A; appears in the collection of
eigenvalues is called its multiplicity.

Lemma. If A is a linear operator represented by an nxn matrix A, then the
dimension of the eigenspace dim(E;(A4)) < m, where A is an eigenvalue of A of

multiplicity m.

Definition. The set of all eigenvalues of operator A is called a spectrum of

the operator.

Eigenvectors and eigenvalues finding problem:

Suppose the basis {ei }izfn in the space K is give, and the operator matrix

in this basis is known A= {aj; j=rq - If the vector Xe K has coordinates

X={X,,%, .., | in this basis, the coordinates of the vector Ax can be found
and written in the matrix form as follows:
AX=A-X=1a

ij X
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In accordance with AX = AX, we can write down the following matrix form of

the eigenvalue-eigenvector equation:
=Al-X,

A-X

where | is an identity matrix.

Hence, the equation (3.16) may be written in the form:

(A-A1)X =0
or

a;1 Ao a1 10
a1 A n | |0 1
_anl an2 ann _0 0

Then, we have
;-4 ap an
ay)  ap -4 aon

L anl an2 ann _ﬂ_

(3.16)
(3.17)
01\ X
0 X2 ~0
1]\ X,
X1
21 _o. (3.18)
Xn

Thereby, to find eigenvectors and eigenvalues of the linear operator, we have to

solve the following homogeneous system:

(all —ﬂ,)Xl +aioXo +...+ Q1 Xy = 0
dr1Xg + (3.22 —ﬂ,)XZ +...+as Xy = 0

Ay Xq +appXp +.o+ (A, —A)X, =0

(3.19)

The homogeneous system (3.19) with n equations and n variables has a

nonzero solution if and only if its matrix is singular, i.e. we require that

all—l

D(ﬂ,) _ a1

anl

aio
a22 —A

an?

a1
Aon

=0 or det(A-Al)

0 (3.20)

Equation (3.20) is called a characteristic equation, and the left-hand side
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of this equation is a polynomial in the variable A called the characteristic

polynomial.

The following theorem is valid.
Theorem. The eigenvalues of a linear operator coincide with the roots of

the characteristic polynomial.

Next, we need to find the eigenvectors after the eigenvalues have been
computed. For this purpose, we substitute each computed eigenvalue into (3.19)
to find a nonzero solution of the system, which is associated with the
coordinates of the eigenvector appropriate to this eigenvalue.

Example 3.17. Find eigenvalues and eigenvectors of the linear operator

6 2
which is presented by a matrix A = (3 7}
Solution. Write the equation (3.18) for the given matrix A and unknown

coordinates of the vector x= X, %, ) :

P e

Then, compose the characteristic equation (3.20)

det(A—ﬂu):‘G;/I 2

Computing the determinant as usual, the result is
(6-A)7-2)-6=0=42-71-61+4% -6=0,= 4% -131+36 =0,
Solving this equation, we find the roots:

M =9,and 4, =4
They are eigenvalues of the operator presented by the matrix A.

Now we need to find the basic eigenvectors for each A. First we will find
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the eigenvectors for 4, =9. We wish to find all vectors X =0 such that

AX =9X . These are the solutionsto (A-91)X =0, i.e.

-3 24X L0 = [73x+2%, =0
3 -2)\x 3X, —2X,=0
It follows from the solution of the system:

3%, =2X,, = X, :gxl.

Then, any vector of the form X, =(1;3/2), is the eigenvector corresponding to
the eigenvalue 4 =9. If we assign x, = 2, the eigenvector is X, =(2;3).
Analogously, for the second eigenvalue 1, =4. If follows from the

solution of (A—41)X =0:

2 2\ %
=0, = 2% +2x,=0,= X =—X,.
3 3 X2

Thus, any vector of the form X, =(-11)x, is the eigenvector, e.g. at x, =1

X, = (~11) is the eigenvector corresponding to the eigenvalue 1, = 4.

Note. If the matrix operator A is an n X n matrix, then the characteristic
polynomial of the operator A will have degree n. Since, the  characteristic
equation (3.20) is a polynomial of the n-th degree with respect to A, let's denote
itas P(1).

It should be noticed that finding the eigenvalues can be computationally
challenging and could be done using a computer in most cases. In addition, the
roots of characteristic polynomials can be both real and complex.

According to the basic theorem of algebra, any polynomial of the n-th
degree has at least one root, which is either real or complex. Thereby, we can
notice that

1. A linear operator in a complex finite-dimensional linear space has always
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at least one eigenvector;
2. If a linear operator is defined in a real linear space, then the polynomial

P(4) has real coefficients. Moreover, if n is odd, then the characteristic equation

has at least one real root, as a result, the linear operator has at least one
eigenvector.

3. A linear operator in an n-dimensional space cannot have more than n
various eigenvalues, because the characteristic equation is n-th degree.

4. Eigenvectors X;,X,,...,X,, Of linear operator A corresponding to pairwise
distinct eigenvalues ;,4, ,..,4,, are linearly independent.

Proof. (We use the method of mathematical induction).

Obviously, for m=1 the statement is true. Suppose that it is valid for

(m —1) eigenvectors of the operator A, and check it for m eigenvectors.
Let's assume the opposite. Let m eigenvectors be linearly dependent, i.e.
1%y + A%y + .o+ o Xy =0, (3.21)
and at least one of the coefficients in (3.21) is not equal to zero, for example,

aq # 0. Applying the operator A to (3.21), we get for each term:
Alorky)= (%), Alaz%a)=2o(a2%2), s Ala %)= An(@n %)
By the properties of the linear operator, we can write

oy X + Ay ARy + .ot Oy Am Xy = 0. (3.22)

Multiplying (3.21) by A, and subtracting it from (3.22), we get
a1 (U = A g + @2 (A = 2 JXp + .+ @y (A1 = Am Kinq = 0.
(3.23)
Due to the assumption of the statement, (m-1) eigenvectors are linearly

independent, that is all the coefficients in (3.23) must be equal to zero.
Therefore, a; (4 — A, ) = 0, but it contradicts the assumption that a; # 0. So, the

assertion is proved.®
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5. If all n roots of the characteristic polynomial 4;,4,...,4, are distinct,

then the corresponding eigenvectors xi,Xz,.,X» are linearly independent and

they can be taken as a basis of the n-dimensional space K.

A diagonal operator matrix

If we have a basis that consists of eigenvectors of an n X n matrix A, then
the representation of matrix A with respect to that basis is diagonal.

Indeed let's construct an operator matrix in a basis of its eigenvectors

()ﬁ,?&z in) We need to apply consequently the operator to each eigenvector,

then, we get
A)_('lz/ii)_('l AX]_:/’i,l)_('1+O')_('2+...+O')_(>n
A)?z Iﬂ,ziz AX2 =0'X1+ﬂ,222 +...+O'Xn
—
AX, = A, X, AXp=0-% +0-Xo +...+ 1, X,

That is, the operator matrix is diagonal matrix whose diagonal elements are the

eigenvalues listed in the same order as the corresponding eigenvectors:

A 0 .. 0]
0 4, .. O _
A= = diag{A1; A2; ... ; An} (3.21)
0 0 .. Ay

In this case, the characteristic polynomial of the operator A is calculated easy as
a product of the following linear factors:
P(2)= (4 - 222 = A).(2n = A).
So, a diagonal operator matrix has an advantage from a computational
viewpoint.
It should be noticed that any operator matrix A given in any basis {&} can
be reduced to a diagonal form. We will do so using the representation of the

operator matrix A with respect to a new basis formed by its eigenvectors {%}. If
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the eigenvectors {X} of the operator matrix A have been calculated, then, each
basis vector of the “new” basis {X,} can be expressed as a linear combination of

the vectors of the “old” basis {g} in accordance with (2.11) as follows:

H =GT 1. Herewith the inverse matrix T is a transition matrix C from the
“old” basis to the “new” basis, i.e. T =C =({X},{% }cr- {X, )2 )-
Thus, the matrix of the operator A in the basis of eigenvectors {X } and that
in the given basis {g} are connected by the formula:
A =C*AC (3.22)
For instance, the eigenvectors of the operator A found as X, =(2;3) and
X, =(~11) in the previous example, form the transition matrix C in the form:

2 - . . . - -1 1 1 1 -
C= . Inverting this matrix gives us C~=— . Finally, the
3 1 5|\-3 2

diagonal form of the matrix A in the basis of these eigenvectors is as follows:
_1(1 1)y6 2y 2 -1) 1(45 0) (9 O
*=5l_3 2)3 7|3 1)75l0 20)7l0 4f

Example 3.17. Linear operator A in a natural basis has a matrix
111
A={1 1 1|
111
Find the matrix B of this operator in the basis of its eigenvectors, as well as the

matrix C of the transition to this basis.
Solution. First of all, find the eigenvalues and eigenvectors of the

operator. To this end, we form a characteristic equation:
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det(A-Al)=| 1 1-2 =0
1 1 1-2

1-4 1 1 1-4 1 1 1-4 1 1
1 1-2 1 -l A4 -4 0]|=21 -1 0 =
1 1 1—/1%::% O /1 —/1 0 1 — [+

2—A 1 54 ]
=21 ~==2 =-2iA-3

= : 1 =il

U |.l —ll
12 =0;  J3=3 are eigenvalues of the operator.

Find the corresponding eigenvectors for 4;, =0. After substitution

11 1Y%

eigenvalue into equation (3.17), we obtain: |1 1 1| x, |=0.
11 1) x3

We solve the obtained SLAE. Performing an elementary transformations
with a matrix (A-Al), we come to the equivalent matrix:
111
111]~@1 112).
111
Thus, the homogeneous system is reduced to the following equation:
X+ Xp + X3 =0, = X =—(X5 +X3).
Let us find the fundamental system of solutions (FSS). Assigning x2 and x3

as free variables, we can compose two eigenvectors:

FSS Xl X2 X3
€ -1 1 0 — eigenvector
&, -1 0 1 — eigenvector




Thus, the corresponding eigenvectors &, and €, are obtained.
Similarly, we find eigenvectors that correspond to eigenvalue /3 = 3.

After substitution A3 =3 into the system of equations (3.17) we obtain:

-2 1 1\x
1 -2 1 X2 =0.
1 1 -2)\x3
Solving the SLAE:
-2 1 1 1 -2 1
1 -2 1
-2 1 ~/10 -3 3 |~ 0 1 1)
) > B
1 1 —222r;r11 0 3 -3
r3—I

Thus, the system is reduced to the following one:
X9 = X3, Xy = X3,
{xlzz 2)3(2 — X3. - {xlzz xj.
The variable xs is free. Assigning its value equal to 1, then, we have x; =1
, Xo =1. Thus, the eigenvector €& is defined as
&5 = (L11).

Let's form a matrix from eigenvectors, i.e. a matrix of transition from a

natural basis to a basis of eigenvectors:

-1 -11
C=|1 O
0 1 1

Then, the matrix A in the basis of the eigenvectors is defined as B=C"AC.

1 -1 111 1Y-1 -1 1) (00O
B=[1 0 1//1 111 o0 1|=|l0 0 O
o 1 1/l111l0 1 1) \0o o 3

One can that the matrix is diagonal with eigenvalues on the leading diagonal.

Also, we can directly build the matrix B without the transition matrix. As
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described earlier, we need to obtain the vectors Ag;, A€,, Ag; as follows:
A& =1, -6=06=0-6+0-8 +0-&,
A€, =1,-6,=0-6,=0-8 +0-€, +0-&j3,
A83=13-6;=3-85=0-6,+0-6 +3-63,

Thereby, we get

o

Il
o O O
o O O
w O O

3.5. Operations with Linear Operators and their Matrices
Let operators A and B be given in the linear space K. The operators A
and B are called equal if the following equality holds
AX=BX, VXeK.

Let A= [aijj and B= [bijj are matrices of these operators in some basis
& }i _1n- Since, one can present

Aéj = a1j§1 + azjéz + ...+ anjén,

Béj :bljé'l +b2jé’2 +...+bnjén,

and A€ = B&;, we get that a;; =b;;, Vi,j=1,n.

That is, the equal operators have the same matrices in the same basis.

Definition. The sum of two linear operators is a linear operator C=A+ B,
which is defined according to the rule:
Cx=(A+B)Xx=AX+BX.
It is easy to prove that the operator C = A+ B is linear if both the operators A

and B are linear operators.

Let’s consider the linear operator matrix C=A+B in a basis {§; }i=1

>
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Suppose the operator A is represented by a matrix A= [aijj, the columns of
which are the coordinates of the vectors A€; in this basis. Similarly, the
operator B is represented by a matrix B = [bijj with the vectors BE; in the same

basis. Then, the matrix of the operator C = A+ B can be composed in the form:

(A+B)Ej = ABj + BEj =ay & +ap8) +...+ anj&, +Dbyj& +by ;& +...+byE =

= (alj +b1j Fl +(8.2j +b2jF2 +...+(anj +bnj Fn.
It is obvious that the matrix of the operator C = A+ B in the basis {§; };_i;

Is a sum of the matrices of these operators in the same basis.

Definition. The product of two linear operators A- B is a linear operator C
such that
Cx = A(B X).
It is defined that C = A-B is a linear operator if both operators A and B
are linear (here without proof).
The matrix of the operator C is equal to the product of the matrices

corresponding operators, i.e. C=A-B.

If A-B=1,thenitisto be said that B is an inverse operator to A and is
denoted as B= A"

Using the matrix representation of the operators as matrices A and B,
respectively, in a given basis, one can say that the operator | is presented by an

identity matrix. That is,
A-B=l = B=A".

Definition. For any vector X e R", a linear operator | represented by the

n X n identity matrix I, which maps every vector X into itself is called an

identity operator, that is

81



=

I X=X
Note. the inverse operator has a matrix inverted to the operator matrix A.

Obviously, this matrix is non-singular.
3.6. Simple Structure Operator
If the linear operator A has n linearly independent eigenvectors in an n-

dimensional space K, then it is called a simple structure operator

A sufficient condition of a simple structure operator:

If roots of the characteristic equation of a linear operator are distinct, the
operator has a simple structure.

Indeed, in the case of n distinct eigenvalues of an operator, it has, pairwise
n distinct eigenvectors, which are linearly independent ones. So they can form a
new n-dimensional basis. In this basis, the matrix of a linear operator is
diagonal.

In other words, an operator matrix is diagonalizable if there exists a basis
of eigenvectors.

Recall that the multiplicity of an eigenvalue A is the number of times that it
occurs as a root of the characteristic polynomial. Let’s consider now the
following lemma.

Lemma. If A is an eigenvalue of a linear operator A, then the number of
linearly independent A-eigenvectors (associated with eigenvalue A) is never more

than the multiplicity of A.

We now use this fact to provide a theorem:
Theorem. To provide the existence of the eigenvectors basis, it is necessary
and enough that to each eigenvalue there exist so many linearly independent

eigenvectors, what is equal to multiplicity of this eigenvalue.
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Since the linear operator has similar matrices in different bases, we can use
the theorem to provide a diagonalizability condition of the operator matrix:

Theorem. Let A be a linear operator represented by an n X n matrix A.
Then, A is diagonalizable if and only if for each eigenvalue A of A, the
dimension of the operator eigenspace dim (E;(A)) is equal to the multiplicity of
A

Example 3.18. Check a diagonalizability of the linear operator matrix

given in the natural basis of linear space R? in the form:

1 1
A= :
Solution. Find the eigenvalues of the operator A.

1-4 1

det(A—/II)z‘ L 3y

‘:(1—1)(3—1)“:12—4z+4=(z—2)2 =0.

So, 4 =2 —eigenvalue of operator A of multiplicity 2.

The corresponding eigenvectors follow from solving the SLAE

1-2 1 \(x — X +X,=0
=0.= = X =Xp.
-1 3-2)\x — X +Xp =0

Thus, %, =(L1) is an eigenvector corresponding to 4=2. That is, we have that

the fundamental system of solutions consists of one vector. Then all other

solutions can be expressed through X;, which implies that any 2 eigenvectors

will be linearly dependent. Thus, in linear space R? there is no eigenbasis of the
linear operator A. Thus, the linear operator A is not an operator of simple

structure.

83



Chapter 4. EUCLIDEAN SPACE AND ORTHONORMAL BASIS

4.1 The Concept of Euclidean Space

Definition. A Euclidean space is a finite-dimensional vector space over

the reals R, with a scalar product defined such that to each pair of elements of

this space X and § matches a scalar denoted by (ifl) The properties of the
scalar product comply with the following axioms:

1L (X)) =%

2. (ax,y) = a(X,y)

3. G+ =EN+(EZY)

4. (x,x)>0,ifx+0

Conseguences of the axioms:
1. (%,2)= A(%,9)

indeed, (x,27)=(27.3)= (3% )= 7(% ¥ ) = &.3)
2. kyez)=fyhlez)

Indeed, (X, y+2) = (Y +27,x) = (y,X) +(Z,x) = (£,y) + (X,2)

Examples of scalar products in different spaces.

1. In vector spaces of real numbers R? and R3, the scalar product is given by
(x.v)- 9‘-608{;«9}

All axioms can easily be verified as done in the course of analytical

X

geometry. One can notice that this is specifically the case when a Cartesian
coordinate system has been chosen, as, in this case, the scalar product of two
vectors is the dot product or scalar product of their coordinate vectors.

2. A space continuous functions in the closed interval [a, b] denoted as
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Cl[a,b], the scalar product is defined by

Il

D ey T
x
—
N

All axioms are fulfilled due to the properties of the definite integral. It
should also be noted that in this space one can introduce the scalar product using

other definitions. For example, one can present the scalar product in C[a,b] in
the form:

where (t) — an arbitrary nonzero function continuous on [a, b].

Example 4.1. Consider an n-dimensional vector space over a field of

complex numbers. Let's choose the basis in this space {I; } _in- Then

-

X=Xl +X%1,+..+x1

— —

Y = Yok + Yol +et Y,

Based on the properties of the scalar product:

n n
(7( y) ZX.'.ZyUk—ZZ Xi Yk - ( )
i=1 k=1 i—1k=1
We denote (ihik): ;. , where «;, # 0 in accordance with the axiom 4.
Hence,
(X,9)=2 D XY (4.1)
i=1 k=1

The relation (4.1) is a general form of the scalar product in a finite-
dimensional space, expressed via the coordinates of vectors.

4.2. Orthogonality and Modulus of the Vector
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Let E be an arbitrary Euclidean space.

Definition. Vectors x € E and §e E are called orthogonal if their scalar

product is zero, I.e.

In this case, we write X 1 y.
Definition. The modulus of the vector xeE is a non-negative real
number, which is determined by the formula:
%=/(x.%) (4.2)
In the spaces R? and R3 the orthogonality of vectors means their
perpendicularity, and their moduli are their lengths.

Example 4.2. Let E=T, be an Euclidean space defined over the field of

complex numbers. Then orthogonal vectors X and 9 satisfy the ratio

i=1 2ke=1 XXV = 0 (4.3)
In particular, if
0,i # k
Tk = {1,1' —k
then the relation (4.3) takes the form:
Yk=1%Yk =0 (4.4)

Then, the vector modulus can be calculated by

= /Z\xg\ (45)

In the space E = R"instead of formulas (4.4) and (4.5) we obtain:

n
> XYk =0 (4.6)
k=1

X= ,/kZ:,XE 4.7)

Example 4.3. In the space C[a,b] the orthogonality of the elements means
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that(;uy) _[p(t) )-y(t)dt =0, where p(t)>0,vte|[a,b].

In a general case, the modulus of an element of an arbitrary Euclidean

space is called the norm and is denoted as
I%]= (%, %).
In the spaces R? and R3, the norm coincides with the length of the vector X

/.. [X|=[%|. In the space C[a,b] the norm of elements is defined as:

=] ot ]

=[]

From the definition of the norm it follows that

orif p(t)=1, then

1) H)?H >0,atx # 0and [X|=0, only when x=6.
2) |x]=|2Jx]-
If H)?H =1 then the vector X is called normalized.

Obviously, any nonzero vector can be normalized by multiplying it by a
factor PR Then y = X and||y||=1
2 x| |

4.3. Schwartz and Cauchy-Bunyakovsky Inequality

Let E coincide with a three-dimensional Euclidean space (E=R®) with an

scalar product:

53] o %5 @)
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Taking into account that <1, it follows from (4.8):

cos[i, yj

5] -cof 1.5 <[ . @)

that is
(x.v) <[}y (4.10)
We show that inequality (4.10) is valid in any Euclidean space. For this

purpose we will take arbitrary elements X E,y e E and any scalar « € R.

Then,

" (x-ay.x-ay)20 (4.12)

=
The left-hand side of the inequality can be expanded in the form:
(%.%) - (X,0)~(c¥,%) + (§.65) > 0,
that is

or

%% - a(%,y)-a(7,%)+|a*y|* = 0. (4.12)

X,y . .
This inequality is valid Ve . Let's choose szﬁ—z/), then the inequality

—

y
(4.12) takes the form:
— - Y
X, =
e —@(x’,y%(’fg) 57+ #y4)1 57 20,
il il i
or
RN,
‘X‘Z_\(X’Y)‘ >0
/.



that is

\(ﬂfé\?\z-\?\z (419

M the inequality (4.13) can be

rewritten as:
s <[ BT (4.14)
This inequality in any Euclidean space is called the Schwartz inequality.

Let's write it in another form, extracting the square root of both parts

)<l @19

In an n-dimensional Euclidean space with a natural basis, this inequality
will be written as follows:

zxk'yk

k=1

n n
2
S Xk *
k=1 k=1

Ve (4.16)

The inequality (4.16) is called Cauchy inequality.

In space C[a,b], the inequality (4.15) takes the form:

<= \/T )fdt- J JIy()] (4.17)

a

b

[ x(t)- y(t)dt

a

The inequality (4.17) is called Bunyakovsky's inequality.

4.4 Orthogonal and Orthonormal Basis. Gram-Schmidt procedure.

Definition. The basis of Euclidean space {T, }i:rn is called orthogonal if

the scalar products of distinct basis vectors are zero,

(I,1,)=0ati=k.
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If, in addition, the modulus of each basis vector is one, Hiiuzl,w =1n,

then the basis is called orthonormal (ONB), i.e.
. 0, ifi=k
L :)=06; =1 .. . ..
(15 =04 {1, if i=k
Lemma. Pairwise orthogonal nonzero vectors are linearly independent.
Proof. Let the vectors {Z}i:rm be pairwise orthogonal, i.e. (;,ﬂ)zo if

I =k . At the same time all x; # 0.

Suppose that

iai % =0 (4.18)

i=1
Taking the scalar products for both of parts (4.18) with vectors x?

(k = 1_n) and accounting the properties of the scalar product, we get that

m AN R
Zal(xi,xk)zo,Vk =1,n.
i=1

Letk = 1, then

m — —
> (X, %)=0 :>H(Xi,X1)= (Xl,xll‘:al(xl,xl): 0=/ (x4, % )>0] = |& =0
i=1

Similarly, we can show that all «; in (4.18) is zero, i.e. {g}izm are

linearly independent.

Theorem. Every Euclidean space has an orthonormal basis.

Proof. Let E be an n-dimensional linear space. Then there always are n

linearly independent vectors {ﬁ}i:rn. Let's denote |, =1,* and construct a vector

I =1, + aq1l{". Herewith, it should be noticed that I, =0 as the system of

vectors {r, }izfn Is linearly independent. Coefficient «;; choose so that the
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vectors " and I, were orthogonal, i.e.

=

070 = i )0 = =2
i)

/\q
N
|_\_1
™ ~—

Next, let's compose a vector r3*:
13" = I3+ aply” +apol7
where I3 =0, since |,",1;" and I, — are linearly independent.
Let's choose a,; and &y, So that the vector I3~ will be orthogonal to the
vectors 1" and I, i.e.

(.17 )= (0 7 )+ o (71 )+ ez
3.1 )=\l Jragills l Jrazllz h

Similarly,

If (n-1) vectors pairwise orthogonal are constructed in the same way, then the

vector | can be chosen in the form:

Tk g 1k 1k Tk
I :|n+an—1,1|1 +an—1,2|2 +---+an—1,n—1|n—1’

where I =0, since I, and {ﬁ*}izl —— are linearly independent.

*
|

We will demand I." to be orthogonal to all the other vectors {T }I That is,

=1,n-1-

we have the following (n - 1) conditions:




All unknown coefficients will be determined from this system as follows:

An-1k =~

Thus, for an arbitrary basis {r, }i:rn it is always possible to construct n pairwise
orthogonal vectors, which by virtue of the lemma will be linearly independent.

If each vector of the orthogonal basis {E*}izﬁ Is divided by its norm, we

obtain an orthonormal basis:

|
!

7*
1
7

lp

*

!
|

*
n

=% "
In

9 sy

That is, there exists a set of orthonormal linearly independent vectors which

span a particular Euclidean space. &

Note:
1. A Euclidean space has more than one orthonormal basis.
2. The algorithm described above in the proof for orthonormalizing a set of
vectors in a Euclidean space is called the orthogonalization process (or Gram—

Schmidt orthogonalization).

i1

The scalar ¢, .:—(—)4 ¢ is called the Fourier coefficient of I with
i-1,j Ij ,Ij

respect to TJ . The basic operation related to finding an orthogonal vector is

called orthogonal projection. This operator projects the vector E orthogonally

| . )
onto the line spanned by vector |; as proj. I, = (f IJ )Ij :
il

Example 4.3. Find the orthogonal basis in the space of polynomials not

higher than the second degree, which are defined on the segment [-1; 1].
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Solution. As a starting point we take the natural basis as a system of the

following functions:
=11 =t, T, =t2.
Then, we will find a vector I,” orthogonal to the first basis vector lg = TO as
" =1, + |, That is, using orthogonal projection (taking the scalar product of

rl* and E) and equating it to 0) we get

1 1
[1-tdt+ g [dt=0=010-2=0 = g =—
-1 -1

=0

Similarly, 15" =1, + aylg +aply". Then, appropriate orthogonal projections

lead to

' Tk
('2 lo

L 2 t31 2 > = 1 1 -
):_jlt dtzg :g;and (IO,IO ): jl-ldt:t\_1:2; i.e.

-1 -1

- 1k 1
Thereby, we have a second basis vector |, =t? - 3

Summarizing all the vectors we get the orthogonal basis in the form:

ro*zl,
L' =t,
— 1
|2 =t2 -

Let's find the norms of these vectors:
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T4

(3 (tz—;j-sﬁ

Finally, the vectors ﬁ; f; and 2 /2 form an orthonormal basis

l\)_>(-
|
b —
TN
—+
N
[
Wl
~__
N
o
—

[l
g_
b
TN
—

D
[
wlN
—

N
Ol
~_
[l

of the space of polynomials not higher than the second degree defined on the

segment [-1; 1].

4.5. Orthogonal Complements

Definition. If §eE Is an element of a given linear space such that
satisfies the condition (9,)?):0, i.e. QLQ VX e L, where L is a subspace of the
space E, then it is said that the vector § Is orthogonal to subspace L. The set of

all elements §e E, orthogonal to L, is called an orthogonal complement of the

subspace L and is denoted as L (read “L perpendicular”).

Lemma. If L is subspace of the space E, i.e. Lc E, then its orthogonal

complement also forms a subspace of the space E, i.e. L'c E.

Proof. Take any two elements y; and y, in the L‘. Then
(ﬁi): 0A (Yzi): 0,Vxe L. Consider the case y, + VY, :
(s + vau )= (y2 X)+ (5. X)=0, ice. v+, e L.

—_— —

Similarly, - y; € L, since (a-yl,x): a(?l,i)z 0,vxel.m
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Example 4.4. Let L be a one-dimensional subspace of two-dimensional

space V2 (plane). Then Lt is a line in this plane perpendicular to the line L.

Example 4.5. Let L be a plane in three-dimensional space V3 that passes
through the origin, then Ltis a perpendicular to this plane and is also passing
through the origin.

Let E be an arbitrary space, and L be its subspace and LY be its

orthogonal complement. We also suppose that an element xel and xelt

exists. That means(;i, ;<): 0,=> X = 0. So,

—

LALt=0.
Theorem. In any Euclidean space, the sum of the dimensions of the
subspaces L and Lt always equals to the dimension of the whole space.

Proof. Suppose that a subspace L is given in space E, and its dimension is

equal to k, i.e. dim L=Kk. Also, let the dimension of its orthogonal complement
be equal to m, dim L =m.

—

Suppose orthonormal bases in L and L™ are given by vectors Egjgk

 —

and fjf; fy . respectively. Let X be an arbitrary vector xeE". We can

construct a new vector 9 as follows:
.k
y=> (01 o (4.19)
i=1
Obviously, this vector belongs to the same space, 9 elL.

In the same way, we construct the other vector

—

I
I=X—-Yy=X~-— g(x g,)gI (4.20)

Taking scalar products of each side of the equality (4.20) with respect to



the vector gJ(J 1, k),we get
(Z 91) (; Ej)‘[i& a)](g,,gj) (Q,gj) i(x 9!) (EE)=

i=1 i=1 —
=(x.;)- (.o )-

§ij
Thus, the element z is orthogonal to each of the vectors of the basis
0,,9,.--,0,. Then any vector ¥ € L satisfies condition Z L Y. That means
1L, ie zelt

—_—

In this case z can be represented in the basis of vectors Ef? f, as:

- m —
z=>n -1, (4.21)
where 7, = (Ef) are coefficients and {f, }lzﬁ are vectors of the orthonormal
basis.

Let's denote ()?gT)= &, then
X=7+y=

—

X=>n f|+Z§, gI (4.22)

Thus, the element x € E™ can be decomposed in the basis vectors:

—_—

91,929k . Fares T (4.23)

The vectors from (4.23) are pairwise orthogonal, i.e. (g, ) 0,vi=1k
and Vj =1,m, as they are basis vectors of { i}i=1,T< and {f—j}jzlm :

Thus, the vectors (4.23) are linearly independent, so they form a basis in E" and

their common number is k + m=n. Thatis dimL+dimL" =dimE" m

The latter means that E" is a direct sum of subspaces L and Lt and is
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denoted as:

E,=LaL

Definition. A space R is a direct sum of subspaces R1 and Ry, if VxeR is
a decomposition X = X, +X,, where X e€R,,X,eR,. In doing so, this
decomposition is the only one.

Remark. Analogously to the three-dimensional space R?, in the case of
arbitrary Euclidean space E", a vector § which is represented by expression
(4.19), is called the orthogonal projection of the vector X on subspace L, and the

vector z = X —9 is orthogonal projection of the element X on subspace Lt (see

Fig. 4.1

Figure 4.1)
Example 4.6. A subspace L is formed by a spanning set of vectors
a, =(2-13-2),a,=(4-251), a,=(2,-L118). Find the basis of orthogonal

complement Lt

Solution. Let us check whether all vectors are linearly independent, and
define the dimension of the subspace, dimL.
2 -1 3 -2\px(-2)+rp, - (2 -1 3 =2 2 -1 3 =2
4 -2 5 1 rg-n—->rp ~/0 0 -1 5 |~|0 0 -1 5
2 -1 1 8 0 0 -2 10 0 0 -1 5
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That is only two vectors, for example, & and a, are linearly

independent, and they can be taken as a basis of this subspace L.
Let x=(&,&,5,&)eLt, then in accordance with the orthogonal
complement’s properties, we have

{g,aj:o:{zél—ﬁﬁség—za:o:{ &3 =554
X,a, =0 —&3+95, =0 S2 =261 +363 =264

{ $3=9¢4 . { ¢3 =96y
$2 =28 +383 28, §p =281 +3:504 — 284 =25 +1324

In this homogeneous system of SLAE, two free variables are assigned as
& and &4 . That is the dimension of the subspace is dimL =2. The FSS
associated with this system can be found as
§1| 62| 63| Sa
eg| 11200

e, | 0 [13[5 |1

Hence, the vectors e, = (1;2;0;0) and e, = (0:13;5;1) form a basis in L* .

Example 4.7. A subspace L c R% is given by the system of homogeneous

$1+2865+363 -84 =0
equations as 461 — 2 + &3 285, =0

&1 +585 +983 48, =0

Find the basis of the orthogonal complement Lt
Solution. Compose a matrix of homogeneous SLAE and calculate its rank

by reducing this matrix to the row echelon form as follows:
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1 2 3 -1 1 2 3 -1
1 -11 2|irh-n~|0 -3 -2 3 ~(
1 5 5 -4)y-n (0O 3 2 -3

1 -1 1 2
0 3 2 -3)

It means that the system is reduced to two equations and has two linearly

1 2 3 -1
0 3 2 -3

Hence, RgA= 2.

independent solutions, as a result, dim L=2 and dimL" =2,

Determine the solution of the reduced system:

{51—52 +83+28, =0
38y +2863-35, =0

Suppose that &3 and &, are free variables. Then

& = (265 +38)

&1 =82 +83+28, Z%(—Zfs +3E4 )+ &3+ 28, =%§3 +384

The FSS is calculated as

S1| S2 | 63| ¢S4
e (1| 2110
3 3
62 3 1 0 1

That is, the basis vectors of L are a and g such that
e =(1,-2;30) and e, =(31;0:1)

To find the basis of the orthogonal complement L1, we have to write:

X,e; )=0 o {51—2§2+353:0
X6y )=0" (3G +&+E4 =0

Let's find the FSS of this system of homogeneous equations
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1 -2 3 0) (1 -2 3 0) &-25+35=0 & =-T5+95
301 0 1) W0 7 -9 1) 778 08 +8 =0 & =28 35

S1 |62 | 63| S
b]_:el 2 1 0 -7

b,=e, | 3|0 |19

That is, the vectors by (2:1;0;~7), b, (—3;0:1;9) form a basis of L* .

4.6. The Gram determinant

Suppose that vectors {g—, }i:fk are given in the linear space E. The Gram
matrix (or Gramian matrix, Gramian) is a matrix whose entries are given by the
scalar product T = (gij)z (EIEJ) Vi, j=1k.

Then, the determinant of this matrix is called the Gram determinant and

looks like
5@@% gig gi’gin
detr = A =|92291) \92,82) - 82,0, , (4.24)
) I CHEN N
Suppose that the vectors {é i }jzlk are linearly dependent. For instance, a

vectorg—k is a linear combination of vectors gigjgi as a result the k-th

column of the determinant will be a linear combination of the other its columns.

That is, the Gram determinant is equal to zero, A=0.

Theorem. If the vectors @}isz are linearly independent, then Gram’s

determinant of these vectors is nonzero, i.e. A #0.
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Proof. Suppose the opposite, that the Gram’s determinantA = 0. Then,
based on the properties of the determinant, one of the columns (rows) is a linear
combination of the others. Therefore, there is a nonzero set of numbers

aq,05 ,.,0p , SUCh that
Zai .g; =0, (4.25)
i=1

where 5, IS a vector whose coordinates coincide with the entries of the i-th row

of the determinant (4.24).

Equation (4.25) is equivalent to k equalities in the form:

al(al, g?)+ ay (E, g?)+ oy (&, El): 0,

or

((a151+a2§2+...+akak)51)=0 (4.26)

Let's denote the sum of k terms as a new vector:
> g, =y (4.27)

It is obvious that 96 L.

Then, the equality (4.26) takes the form:
(y,9,)=0 (4.28)
That is, the vectors are orthogonal 9 1 5;

Similarly, we can write the other equalities, i.e. the following system

occurs:
(4.29)

Further,
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_Zkllai (E.’@Tz)=0
-

; (4.30)
k .
_Zlai (gi’gk)zo
i=
Finally, we take the form:
(i)
.93)=0 (4.31)
(v.90)=0

It follows from the equations (4.28) and (4.31) that

ylgi, Vi=Lk
Thus, if L is a set of spanning vectors {g; }; i, then y1LandyLlL". Onthe
other hand, it follows from (4.27) that §/e L. So,

(§LL)A(§LLL):>§/=6

k
With this fact, it follows from (4.30) that Zaiz = 0. It means that the vectors
i=1

{9i }isz are linearly dependent. However, this contradicts with the conditions

of the theorem. B

4.7. Orthogonal Projection

Let’s consider two subspaces L and L» of the space E", where the
dimension of the subspace L isdimL =k. Suppose xeE" isa given nonzero

vector of this space, and suppose 9 Is another vector. We seek for the

orthogonal projection of § onto the subspace L. Let a basis of L be given by the
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vectors {gi}isz . Then the vector 9 can be represented there in the form:

—_— k —_—
y= Z‘f. gi (4.32)
i=1
So, the problem is reduced to finding the coefficients of decomposition &;

in (4.32). Recall if the basis{g;};_;; is orthonormal, then we have that

&= (x, gi), i =1 k. However, in our case, we have chosen an arbitrary basis as a

result the problem turns into a more general one.

Let Z be projection of vector X along LY. Then zLL, ie. ELgT,

—_ —

Vi=1k. That is (Z,E):O, Vi=1k, or (i—f/,gi):o, or (xg,):(ya) By

assigning i with values 1,2,...,k consequently, we get

AN
X0y =Y, 9k

Substituting (4.32) into the system (4.33), we can write

4

¢
,92; (4.34)
sgk

< x|

51(_51;5 )+§2(§2’_§1 ot G gk’gl):(
51591’922+5259_2’92 +..+ Gk gk'gzgzg
S04, 9 )+ 8000, 9y )+ + &gy Oy

X

Since the vectors {g; };_tj are known, all the scalar products (ﬁ, 61) are
known except for the coefficients {cfi }isz . One can see that the determinant of

the system (4.34) is the Gram determinant which is constructed by linearly

independent vectors {g; };_iy, i-e. the determinant A # 0. Therefore, the system
(4.34) has a unique solution. After finding this solution, the coefficients

ifi }izﬂ will be known, in turn, the vector y will be found.

Suppose that the basis {g; };_;; is orthogonal, i.e. (ﬁi,g_jj)zo Vi#j.
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Thus, the system (4.34) takes the form:

fla !6 :(;,6) L
<2 §;§,12 :Egélz;:%i =()i'—gi2),Vi:l,_k.
Sk\9k 9k J=1X 0y H9|H

That is, if the basis is orthonormal, then, the coefficients ¢& are

determined by a simpler formula such that & = ()?6, )

Example 4.8. Find the orthogonal projection of the vector X = (4,-1,-3,4)

given in the arithmetic space R* onto the space L and also its projection onto the
orthogonal complement Lt (i.e. so-called an orthogonal component), if it is
known that L is spanned by the vectors x1=(LL1), X =(12;2-1),
x3 = (1,0;0;3).

Solution. To find the basis of the subspace L, we use common procedure,

when the matrix, whose rows are the given vectors, is reduced to a row echelon

form:
11 1 1 1 1 1 1
1 0 0 3
A=|1 2 2 -1|~/0 1 1 -2|~ .
011 -2
1 0 0 3 O -1 -1 2

Hence, the matrix rank is RgA =2. Also, we choose the vectors
g, = (1,0;0;3) and g, =(0;11;—2) as basis vectors.
Then, the orthogonal projection of the vector X onto the subspace L is
- . o — —
Y =proj, X =a;- g1+ az-gs.
Coefficients a@; and a, satisfy the system:
(E,a): 0, where z=x—vy, i.e. (95,): (5&5;)

or
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{ (91 91)) “2((92 91):(; 97)

Finding the scalar products,
01.01)=10,  (g:.,)=-8, (92’92):

[x.01)=16. (x.9;)=-1

allow us to form the system of equations

10y — 60 =16 51 —3ay =8 o =2+ay
= =
—6ay + 60, =12 o —ay =2 5(2+ay)-3a, =8

R
Hence,

proj, X = y =(1,0,0,3)-(011,-2) = (1,-1,-15),
and

7=x-y=(4-1-34)-(1,-1-15)=(3,0,-2,-1).

proj . X

Example 4.9. Find the orthogonal projectiony and proj,» ¥ = Z of the

vector X =(1,0,0,3) onto the subspace L, which is given by SLAE:
§1+62+254 =0
S2+63+84 =0
281 =36, g3+ &4 =0
To find the basis of L, we need to define the FSS of the given system.

Reducing the coefficient matrix to the row echelon form, we can find the rank:

11 02 (11 0 2) ,(10-11)(10-11

A=l0 1 1 1l-lo0 1 1 1| ~1]o1 1 1l~lo1 1 1
5

2 -3 -1 1) 10 =5 -1 =380 0 4 2] 00 2 1

RgA=3.
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Hence,

283 +84=0 $4 =283
Eo =83 =84 = 162 =83 +283 =43
§1=863—¢4 §1=E63+283 =383

Then, assigning a value 1 to the free unknown &, we can calculate

S1 | S2 | &3 | Sa
Ei 3 1 1 -2

So, §/=a-a.

Taking into account that (;1 al): (;i a) we get:
a(9+1+1+4)=3-6;

150 =-3 g=_S-_1
15 5
Therefore,
. - 1
proj Xx=y= —g(3,1,1,—2),

and

proj X=z=x-y= (1,0,0,3)+%(3,1,1,—2)=(

o] o
gl

1)

4.8. Orthogonal projection and minimization problem

gl

Let us now apply the scalar product to the following minimization

problem: Given a subspace L < E and an arbitrary vector xeE, we have to

find among all vectors ye L such one that is closest to ?, i.e. to make the

distance between the vectors xand y as small as possible: Hx — yH — min.

The next proposition shows that an orthogonal projection X onto the

subspace L, i.e. ¥ = proj, X is the closest point in L to the vector x and that
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this minimum is, in fact, unique.
Let ¥ = proj, ¥, and Y, is any vector in L. Then,
=y, =(x-y)+(y-v) (4.35)
(y—i)e L,and as Z = X — Y = proj,. ¥, we have that ()?—;/)e L', as a

result this vector (Q—YI)LL and, also, (i—f/)i(f/—i) Thereby,

-y} y-v.)-o.
Taking scalar products of each side of the equality (4.35) with respect to

the vector X — y; , we get:
e ==y br=yah o=y b= ) = o=y + -3 f
or
ol =y eyl

As y # y;, we can claim that H§ —yﬁH2 > 0.

Hence,
=i > -3

That is, the distance between the vectors xand y HE&—&H is smallest, if 5 =

proj, % . This fact is obvious in space R3, as seen in Fig. 4.2.

— ¢

Z -

)/ &/

Fig. 4.2
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Chapter 5. LINEAR OPERATORS IN EUCLIDEAN SPACE

5.1. Adjoint Operator

Definition. An operator A*is called adjoint to an operator in space E" if the
following condition is satisfied:
(4%.7)=(%.47). (5.1)

for any ¥ and y of this space E".

Note. Adjoint operators mimic the behavior of the transpose matrix on real
Euclidean space. Recall that the transpose AT of a real m x n matrix A satisfies
(Ax,y) = (x,ATy)
forall x € R"and y € R™, where (*,*) is the Euclidean scalar product, i.e. the

dot product.
Indeed, in the matrix form, the scalar product of two vectors in a given
basis can be written using the Gram’s matrix I" as follows:
(¥,5) = XTTY.
With this relation, one can rewrite (5.1) in the form:
(AX)TTY = X"TA*Y
In accordance with the properties of the transpose operation we have
XTATTY = XTTA*Y
That is, the following equality between the matrices occurs
ATT =T A%,
Hence,
A* =T714TT (5.2)
In the case of an orthonormal basis in real Euclidean space, we have that the
Gram matrix coincides with an identity matrix, i.e. I' = I, then (5.2) takes the
form:
A =AT (5.3)
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Theorem. For any linear operator A in the space E" there exists an adjoint
operator A*, and this operator is unique.

The adjoint operator A* is linear, and its matrix A* = {a},} with respect to
any orthonormal basis can be deduced from the matrix of the operator A given
in the same basis according to the rule:

1. A* = AT or a,, = ay,; (the conjugate transpose in the case of a complex

space);

2. A* = AT or a},, = ay; (the transpose in the case of a real space).

Proof. We prove this fact for a real space. Let us choose an orthonormal

basis {g;};_75 in the space E", where an linear operator 4 is given, and let
{§i};—17 and {n;};_17 be the coordinates of the vectors xand y in this basis.

Making the scalar product of the vectors A ¥ and 3, we get

n n n n
(A%,y) = AZ&JQ;ZW@ ZZfln](Agl,g]
i=1 j=1

i=1j=1
n n n n
— — —
= zzgl nj(aligl taz; g + 0t Ay gnJg] ZZfln]a]l
i=1j=1 i=1j=1

Here A = {a;;}; is the matrix representation of the operator A in the

i=1,n
j= 1n

orthonormal basis {g;};_17. Also, we transpose this matrix as A” = {a;;};_17-

j=1n

lln

One can prove that the matrix AT corresponds to a linear operator A7 that

is an adjoint of A, i.e. AT = A*. For this purpose, let us consider the dot product:

n

n
(¥,47y) = Zfig_i):zﬂjATE; =
i=1

j=1

n n
zzsﬂm@.aﬂﬁ+ajzg_z’+"'+ajnﬁ) =

i=1j=1
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n

- Z . §m; (90 @i 91) = Z

n n
i=1 ]:1 =1

So, (A%,¥)=(¥,4"Ty)=>4"T=4".m

Zfiﬂjaﬁ

n
j=1

Remark. It should be noted that this theorem is not valid if a space has
infinite dimension. It is also emphasized that no such simple relationship exists
between the matrices representing A and A* if the basis is not orthonormal.
Otherwise, if the basis is not orthonormal, the matrix of an adjoint operator is
defined as

1. A* = T4 (in the case of a complex space);

2. A* = T71ATT (in the case of a real space).

Thus, it is seen one useful property of orthonormal bases.

Properties of an adjoint operator

Let E" be a real Euclidean space, then
1) for given an identity operator, we have
I'=1
According to the properties of identity matrix, the scalar product of appropriate
vectors leads us to the following result:
X, Y)=&FPN=EFI1y)=>1=r
2) An adjoint of an adjoint linear operator is the linear operator itself
A) =4
Indeed, the scalar product of appropriate vectors gives us
(A%, 7)=(x.ay)=ay.%)=(.@)yx)=(a)%7)
Equating both sides of the equality, we have 4 = (4*)*
It follows from this fact that twice transposed matrix coincides with the

matrix itself, i.e. (4A7)T = 4
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3)(A+B)*=A"+B"
Indeed, using the properties of the scalar product of appropriate vectors, we

obtain
(Z.(4+B)y)=((4+B)X,7)=(4%,7)+(BZ,¥) =
—®ZAY)+ @B Y)=(Z.4F+B ) =(Z,(4 +B)7)
Hence, the matrix transposed of the sum of two matrices is equal to the
sum of their transposed matrices, i.e. (4 + B)T = AT + BT
4)(A-B)=A"-B"
Indeed, by making the scalar product of appropriate vectors and

performing transformations, we have
(Z.(4-B)'Y)=(4-B)X,7)=(4(B%),7) = (BYX,4"7) =
(X% B'(47))=(X£B'A'Y),>(4-B) =4"-B’
Therefore, the matrix transposed of a product of two matrices is equal to
the product of the transposed matrices in reverse order: (AB)T = BT - AT.
5) If a linear operator A~ inverse to a linear operator A exists, then (471)* =
(A9~
Indeed, as A- A~ =1, inturn,as I = I* and
r=@A-AHY)=@"Y-4=1L
We have (A71)* - A* = I, that means the fact
(A~ =A™

Therefore, the following statement is true for matrices (4=1)T = (47)~!

Example 5.1. A linear operator A4 in the basis a; = (3,-1), a, = (2,1)

0 -1
0 O

natural basis and A; in the current basis.

has a matrix A, = ( ) Find the matrix of the adjoint operator A; in the

Solution. Construct a matrix A in the orthonormal basis, using the formula
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Ae = C - Ay - C~* where C is the matrix of the transition from the basis {e;} __

to {a;},_, , This transition matrix has a form:

i=

—>:3—>_
e A
then
=i 3
1 _ o 1 1 -
Ae=§(_31 i)(g 01)'(1 32)25(—31 i)'(ol 03)
(7 3)
1,_
4=5(25 3)

Let us now construct the matrix Az, using the formula:
AL =C-A,-Cl=24,=C1-45-C

w256 950 ) (G D=sl DG 5
=56 G 3)-

1
5
1,10 _

=_§(2100 13)=(—24 —12)

5.2. Unitary and Orthogonal Operators

Definition: An operator U on a Euclidean space E" is called a unitary
operator (the underlying field is complex (Hilbert space)) or orthogonal
operator (the underlying field is real) if the operator maps orthonormal bases to
orthonormal bases.

One can demonstrate that if U is a unitary (orthogonal) operator in a

space E" and the vectors {52}1_=ﬁ form an orthonormal basis in this space, i.e.
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(9,.9:) = {é 5= L " then the vectors {u gl} — form an orthonormal basis as

well, that is

1,5 =
Vo vg) ={ys 2, 64

Let U = {uy} represent the matrix of the operator U in the basis {E;}i:l_

Then,

n

Ug_r)=2uir§;, (r= 1,n)

i=1

Similarly

Then, since given the vectors {a}i_H as an orthonormal basis, we obtain

n
(UQ_;»U@;))= uirziiuj&a} :2uirﬂis-
1

n n
i= j=1 i=1
Since u;, are either complex conjugate or transpose values, the last equality

takes the form

n

__(O0,s#r
uiruis_{l s=r

i=1
The expansion of this sum results in two equations:

Upy " Ups T Ugp ~Ugg + 0+ Uy - Ups = 0,(7‘ * S)

U2+ Uy 2+t uy, 2 =1,(r =5) (5.5)
Thus, it has been proven that
0,s#r
(Ug—r)lu.as)) = ((E‘)uas)) = {1 s=7r = 0rs; B

The next theorem gives alternative characterizations of these operators.
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Theorem 1. The following conditions on a unitary (orthogonal) operator
U are equivalent:

(1)) iIf UU* = U*"U = I, then U* coincides with the inverse of the operator
U,ie.

U = U! (5.6)
(ii) U preserves scalar products, that is, for every x, y € E™, the equality
takes place:
(Ux, Uy) = (%,) (5.7)
(iii) U preserves norm (length), that is, for every X € E™,
Ul = [1%]l (5.8)
(i) Proof.

(Ux,uy)=(%,y)=>(,0uy)=(¥,1¥) v¥x,y
Then, we have that
Uv=I=U"=U"'nm

(if) Proof. Indeed, let {El?}i:ﬁ be an orthonormal basis. The operator action

- , , - -
ivesUe =e,, wherele, ! is also an orthonormal basis. Take any two
i i P

elements ¥ = Y7, & ¢; and y = ¥, n; €;. Then:

n n n n
(U?,07)=ZZ&U_J-(U8,U% szzm el,e]

i=1j=1 i=1j=1

= Xi1 Z?=1 fm_j = (7»7) u
(iii) Proof. It follows from the previous proof, considering the scalar

product as a multiplication of the vector U X by itself.

By the Theorem 1, we obtain the following results.

Theorem 2. A complex matrix U represents a unitary operator U (relative
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to an orthonormal basis) if and only if U* = U1,
Theorem 3. A real matrix U represents an orthogonal operator U (relative

to an orthonormal basis) if and only if UT = U1,

The above theorems motivate the following definitions:

Definition: A complex matrix U for which U* = U~ is called a unitary
matrix.
In other words, an invertible complex square matrix U is unitary if its conjugate
transpose U* is also its inverse, that is, if U* = UL,

Definition: A real matrix U for which UT = U~ is called an orthogonal

matrix.

Note: The entries of the unitary (orthogonal) matrix of a unitary (orthogonal)

operator U
U1 Uqz e Un
U= Uz Uz - Uz
Un1  Up2 Unn

satisfy the properties (5.5).

That is, the sum of the products of the elements of any two columns is
equal to 0, but multiplication of the column by itself gives 1.

Thus, if the columns of the unitary (orthogonal) matrix are considered as

vectors, then these vectors will form an orthonormal basis.

Remark. If U is an orthogonal operator, then U* will also be an orthogonal
operator.
Indeed,

Wz,uy)=(2.0wy)=( 00y =(Z,15)=(7.7).

Also, in the case of an orthogonal matrix, the columns of the matrix U7 (i.e.
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rows of the matrix U) also form an orthonormal system of vectors, i.e.

n
s=1

n

Euizk =1, Vi=1n

k=1

Thus, the matrix of an orthogonal operator in any orthonormal basis is
orthogonal.

An example of the orthogonal matrix is the standard matrix for the
counterclockwise rotation of R? through an angle 8, i.e.

4=(Gne cose)

This matrix is orthogonal for all choices of 6 since

4= (5500 coso)(Gne cose)=(0 1) =

Also, the reflection matrix that maps each point into its symmetric image
about the x-axis is orthogonal.

Indeed,

o= 56 2= 9=

The determinant of an orthogonal matrix is equal to +1.

Indeed, it follows from equality U-0F =1 that det(U-UT) = det U -
det UT =det] = 1. Since detU = det U7, then we have (detU)? =1 as a
result, det U = +1

Continuing the previous examples, one can show that the determinants

associated with those matrices are
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cos® —sin6
sin® cos©

0
-1

detd = | = cos® 0 +sin? 0 = +1

detA=|(1) |=—1—0=—1

Theorem. The eigenvalues of an orthogonal operator are equal to +1
Proof. Let X be an eigenvector, and . is the corresponding eigenvalue of
the orthogonal operator U. Then
(2,%)=(UR,UZ) =A%, 12) = N2(Z, %
Since (¥,%)=0, it follows from the last equality (¥,%) =

IA2(X,X)that [A2=1=>1=+1.m

Remark. The matrix of transition from one orthonormal basis to another
orthonormal basis is orthogonal.
Indeed, let {e;};_77 and {e; };=1, be two orthonormal basis. Then

ﬁ
- — -
(€I=a11el+a2162+“'+an16n

_)
— —
4 €>2k == a1281 + a22 62 + -4 anz en

— - - —
Len =aipe1 +azpey; + -+ ay,en

The transition matrix has the following form:

aq1 ai; . Qqn

z1 Az .. Q2n
T =

Ap1 QApz - QApp

Let us consider scalar products (e;, ex). For example, (eg, e;) = 0 written
in the expanded form, leads to
Q11 Q12 + A1 Az + -+ Apg - Ay = 0,
and the expansion of (e7,e;) = 1 gives

a%l +a%1 ++a,211 == 1
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o = = . (o 3 ,
Similarly, for any e; and e, i.e. (ei ,ek) at i # k, we get
n —
Zj:l aij . akj = 0,

- -
and (el-*,e;;) ati = k gives

n

2 _
j=1@ij =1

Therefore, the matrix T is orthogonal.

5.3. Self-adjoint Operators

Definition. An operator A that coincides with its adjoint, i.e. A* = A is
called a self-adjoint (or hermitian) operator.
If A is a self-adjoint operator, then V ¥,y € E™ the following equality
holds:
(4%.5)=(¥.47) (5.9)
Let A = [ayl; -1 be a matrix of a self-adjoint operator in an
orthonormal basis. Then,
1. if a space is over the field of real numbers, the matrix satisfies A = AT
Of aj, = Ay;-
This matrix is called symmetric.
2. 1If a space is over the field of complex numbers, the matrix is a
conjugate transpose of A, i.e. A = A* or a;;, = ay;.

This matrix is called Hermitian.

The following properties of a self-adjoint operator are important:

Theorem 1. All the roots of the characteristic polynomial of a self-adjoint
operator A are real, i.e. the eigenvalues of a self-adjoint operator are real.

Proof. Let A be an eigenvalue of a self-adjoint operator 4 and X be the

corresponding eigenvector, i.e.
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AX =A%, where ¥ = 0.
Because (A% ,%) = (¥,A%), then (1%,%) = A(¥,%). Given that

(¥,%)# 0= 1=1,ie. Lisareal number. ®

Theorem 2. Eigenvectors of a self-adjoint operator A, which correspond
to distinct eigenvalues, are orthogonal.

Proof. Let A; and A, be distinct eigenvalues of a self-adjoint operator A,
and X, X, are the corresponding eigenvectors.

Since (Ax;,x;) = (x1,Ax;)and AX, = 4, X1, A%, =1, X, then
11(?1 ) 72) = AZ(?1 ) 72), = (4 - /12)(?1 ) 72) =0,
It follows from this equality that since 1, # A,, we have (¥;,%,) = 0.

That is, X, and X, are the orthogonal vectors. B

Theorem 3. A self-adjoint operator has a simple structure. (Without

proof).

Theorem 4. For any self-adjoint operator in Euclidean space, there is an
orthonormal basis composed of the eigenvectors of this operator.

Proof. Let an eigenvalue A of this operator have a multiplicity of "k".
Since A is an operator of simple structure, this eigenvalue corresponds to "k"
linearly independent eigenvectors. These vectors form a subspace of dimension
"k". We choose an orthogonal basis in this subspace. Eigenvectors corresponding
to other eigenvalues will be orthogonal to this subspace. Doing the same with
the vectors corresponding to other eigenvalues accounting for their multiplicity,

we obtain an orthonormal basis of the whole space. B
Theorem 5. A matrix of a self-adjoint operator in some orthonormal basis
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IS represented by a diagonal matrix relative to this basis (In other words, a
matrix of a self-adjoint operator is diagonalizable)
Proof. Let A; be one of eigenvalue of a self-adjoint operator A. By

Theorem 1, A, is a real number. Let &, be an eigenvector corresponding to this

eigenvalue, i.e. A€, = A, €,. The vector €, can be considered as a unit length

-

vector, otherwise it could be replaced by a unit eigenvector —- associated with

1€l
the same eigenvalue.

We denote as R, a one-dimensional subspace generated by the vector € ;.
Its orthogonal complement R:- will be invariant with respect to the operator A.

Recall that subspace R; c R is called invariant with respect to a linear
operator A if the image A X of each vector ¥ € R, also belongs Ry, i.e., if X €
R,= AX € R,. The operator A remains, of course, to be self-adjoint.

Let A, be another real eigenvalue of the operator A in the subspace Ry.
The corresponding eigenvector is denoted by e, then

Ae,=1,¢,.

Let R, be an invariant subspace generated by the vectors €, and e,, then
the subspace Ry will also be invariant relatively A. Continue this construction,
we find n pairwise orthogonal, and hence linearly independent unit eigenvectors
of the operator A. In the basis consisting of these vectors, the matrix A of the

operator A is reduced to a diagonal form:

A, 0 .. 0
a0 % .0,
0 0 .. A,

Algorithm for constructing an orthonormal basis of a self-adjoint operator

1. Compose the characteristic equation of the linear operator det(A — Al) =
0.
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2. Find all eigenvalues.
3. Find associated eigenvectors.

4. With obtained eigenvectors, construct the orthonormal basis.

Example 5.2. Construct an orthonormal basis using the eigenvectors of a

linear operator, which is given by a matrix A, in an orthonormal basis of vectors

- 5 >
fi f2, f3, 88
) 2 2 -1
-1 2 2
Compose the transition matrix to a new basis and the matrix of the operator A,

in a new basis.

Solution. Find the eigenvalues and eigenvectors of the operator A. For this

purpose, we write a characteristic equation: det(4; — AI) = 0, i.e.

2/3-1  2/3 ~1/3
2/3  —1/3-2  2/3 |=0,=>-B+2+1-1=0,
~1/3 2/3  2/3-2

Solving the equation, we get the eigenvalues: A1= -1,4>=13= 1, which are distinct
reals. Making the solution of the system of equations (A — AI) - X = 0 for each

eigenvalue, we find eigenvectors associated with it:

A1= -1, then
5/3 2/3 —1/3\ /x1 0
(2/3 2/3 2/3)(x2)=<0).
—-1/3 2/3 5/3/\x3 0

Solving this system, we get the first eigenvector as e; = (1; —2; 1). Then,

A2=A3= 1 (the multiplicity is 2)

-1/3 2/3 —=1/3\ /x; 0
( 2/3 —4/3 2/3 ><x2> = <0)
-1/3 2/3 —=1/3/ \X3 0

The solution of this system leads to the second and third eigenvectors in the
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form: e, = (2;1;0) and e; = (—1; 0; 1), respectively.

basis.

The vectors e;, e,, and e; are linearly independent, i.e. they can form a

In doing so, one can see that pairwise orthogonal e; L e, and e; L e,, but

e, is not perpendicular to e;.

Applying orthogonalzation procedure, we can construct an orthonormal

basis:

+ a3, gy, Where az, = EgZ% then g3 = (—1/5;2/5;1/5)

These vectors are orthogonal, but are not still normalized. Their lengths (norms)

are

2]l = V&: |gz|l = V5 |lgs]| = Veé/s.

Finally, we obtain an orthonormal basis formed by the vectors:

_
e =—(1;,-21)
6
« 5
e, =—(2;1;0)
5
. 6
e =£(—1; 2;5)
6
The transition matrix from the basis of vectors {fl} to the basis of
i=1,2,3
eigenvectors {EL’*} has a form:
i=1,2,3
/ V6 2\/— \/—
_ W6 V5 28 |
6 5 6
V6 0 5vV6
6 6
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The matrix of the operator in the basis of eigenvectors takes the form:

-1 0 0
Ae=<0 1 0)
0 0 1

We can check this matrix by using the change of basis formula as follows:

A, =CT-A-C=
/ﬁ 25 B\ /ﬁ 25 V6
6 5 6 6 5 6
| 2v6 5 MI.E(% 4 ‘21).| 26 V5 26 | _
6 5 6 3\_1 2 o 6 5 6
o, 56 6, 56
6 6 6 6

-1 0 0
0O 1 0)
0 0 1
5.4. Spectral Decomposition of a Self-adjoint Operator

Let’s consider a self-adjoint operator A in a Euclidean space E™. Let e, ...,
e, be an orthonormal basis in this space formed by eigenvectors of the operator
A associated with eigenvalues A, ,...,4,,. An arbitrary vector X € E™ can be

decomposed along the basis of vectors {€;};-1.

n
X =x18 +x,8, + -+ x,8, = Zx] €
j=1

Making consequently scalar products of vectors x and é;, where j = 1,...,n, we

can express that (¥, é;) = x;. That is, one can write

n
—>—> —)

Since, for any basis vector &, j = 1, ..., n, the action of the operator is A(é;) =

A;é;, where 4; is an eigenvalue, then the image of the vector one can be
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presented as follows:
n n n
A7 =4 Y (8)5 | = ) (7.8)48 = ) 1(%.8);
j=1 j=1 j=1

The expression (%, é;)é; corresponds an orthogonal projection of the
vector X onto a one-dimensional eigenspace of the operator A generated by the
eigenvector €. Thus, we can introduce an orthogonal projection operator
denoted as Pj such that

P;% = (%)
The operator is called a projector on the subspace generated by an eigenvector

e]-.

It follows from the feature of the scalar product that the projector is a self-

adjoint operator. Indeed,
(P%.5) = ((2.8)8.7) = (28)(&, ), and

(%, Py) = (%,(7.6)¢) = (v.¢)(%.¢) = (¢,7)(%.¢)
Whence,

(P;x,y) = (X, P;y)

Properties of the projector:

2 _
1. P2 =P,

2. PiP, =0,fork #j
Indeed,
_[&é)g=P; ifk=j
0 ifk#j

With the projector, the image of the vector one can be presented in the form:
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n

Jj=1
Therefore, we have

AZZA]PJZ)]'1P1+/‘1‘2P2++XTLPTL

(5.10)
This expansion (5.10) is called the spectral decomposition of a self-adjoint
operator.

According to the feature of the projector, we have

n
_ 2
= 4
j=1

In general, for any number s > 0, it is valid that

n
AS = Z ;{]SP
j=1

Let’s consider a polynomial of the i-th order with respect to the parameter

A e.p(A) = la]/U Then, this polynomial with respect to the operator A

has a form:

p(4) =

n

n n n n n
a]A] = Zajz/’lkjpk = Zzajﬂkjpk = Zp(lk)Pk
k=1 j=1 k=1

j=1 j=1 k=1

(5.11)

Hamilton-Kelly theorem. If A is a self-adjoint operator and p(1) =
det(A — AI) is a characteristic polynomial of this operator, then
r(4) =
Proof. If the operator A is a self-adjoint operator and 4,,...,4,, are its

eigenvalues, then they are roots of the characteristic equation, that is, p(41;) = 0.
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Hence, it follows from (5.11) that p(A) = 0. &

Considering a matrix representation of the operator, the theorem is valid for
its matric. Herewith, the polynomial p(A) of the variable 4 is called annihilating
polynomial of any square matrix A, and the polynomial with respect to the

matrix takes the form similar to (5.11):

n

p@) = ) p(4)P;

j=1
1 1 1

Example 5.3. GivenamatrixA=|1 1 1 |, show that the characteristic
1 1 1

equation of the matrix A is an annihilating polynomial of it.
Solution. Find the characteristic polynomial of the matrix:

1-21 1 1
1 1-4 1
1 1 1-2

Substituting the matrix A in this expression instead of the variable 4, we

11 1\ /1 1 1\° 3 3 3\ (/9 9 9\ _
3(111)—(111) =3<333)—<999>=0
111 11 1 3 33 \9 9 9

What was necessary to prove.

det(A — Al = =312 — 23,

obtain

Positive Definite and Positive Operators

Definition: A self-adjoint operator A on a space E™ is called positive (semi-
definite or non-negative) if (4x,x) = 0 for every X € E™,
Definition: A self-adjoint operator A on a space E™ is called positive

definite if (Ax,x) > 0 forevery X € E™ except for X = 0.

Properties of positive definite and positive operators
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1. A self-adjoint operator A is positive if and only if all its eigenvalues are non-
negative (positive).

2. A self-adjoint operator A is positive definite if and only if all its eigenvalues
are strictly positive.

3. A self-adjoint operator A is positive / positivedefinite if there existA = B2 for
some self-adjoint / nonsingular self-adjoint operator B.
(i.e. every non-negative number has a unique non-negative square root)

4. A self-adjoint operator A is positive / positive definite if there exist4A = S*S
for some operator / nonsingular operator S.
(It is an analogy with complex numbers, i.e. a complex number z &

nonnegative if and only if has the form z = w for some complex numberw).

Polar decomposition

Theorem: Any operator A in a Euclidean space E™ can be presented as

factorization of the form

A=UP
In the case of a real space, U is an orthogonal operator and P is a positive semi-
definite self-adjoint operator with symmetric matrix; or U is a unitary operator
and P is a positive semi-definite self-adjoint operator with Hermitian matrix in
the complex case.

Proof: Let’s consider a positive self-adjoint operator D such that D = A*A
for some operator A. Given the self-adjoint operator D, there exists a self-adjoint
operator P such that D = P*P. Let’s compose an operator U = A P~1. One
can show that this operator is unitary/orthogonal. Indeed,

* — —1y* -1 _ —1\* pg* -1 _ —1\* p* -1 _
UU=@AP')AP = (PT)AAP ' =(P)'PPP "=
D D
(PP Y)Y PPl=rI=1I
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Thus, A = UP. 1

Remark 1. If the operator A is nonsingular then P is either positive definite
symmetric operator in the real case or positive definite Hermitian operator in the
complex case.

Remark 2. The polar decomposition should be considered as an analogy
between set of complex numbers C and a Euclidean space. First, we recall the
polar form of a complex number z = |z|e‘?, where |z| is the absolute value or
modulus of z and e lies on the unit circle in R?. Then, in terms of an operator

A € E™, a unitary/orthogonal operator U takes the role of e‘?, and |A| takes the
role of the modulus. As seen, if A4 > 0 so that |A| = (A*A)1/2 exists and

satisfies |A| = 0 as well, i.e. a positive self-adjoint operator P = (A*A)l/Z.

Intuitively, we can imagine this decomposition via the factorization of
matricide associated with the operators, namely, if a real n X n matrix A is
interpreted as a linear transformation of n-dimensional space R", then, the polar
decomposition separates it into a rotation or reflection U of the space R", and a

scaling of the space along a set of n orthogonal axes by P.
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Chapter 6. BILINEAR AND QUADRATIC FORMS

6.1. Basic concepts of bilinear functions (forms)

In previous chapters, we have studied linear operators that map from the vector
space into the vector space. The scalar field is the simplest of all nontrivial
vector spaces. Given a vector space with a scalar field, then a linear mapping

from the vector space into its scalar field is called a linear functional on a vector

space.

Definition. It is said that a linear functional f(xX) is given on a vector space
R if a vector X<R and a scalar f(x) the following conditions are fulfilled:
fE+y) = f() + fO),
flax) = af(X),

where X, y are arbitrary vectors of R, and « is any real number.

Example 6.1. Let R be the vector space of n-tuples, which we write as
column vectors with coordinates {x,, x,, ..., x,,}. Then, any linear functional in
the space of row vectors has the representation:

f(x1, %0, v, X)) = a1x1 + Ayx5 + -+ apxy,

Historically, the formal expression on the right was termed a linear form.

Definition. A function of two variables @ (¥, y) given in a vector space R
over is called a bilinear functional (form) if for a fixed X € R it is a linear
function with respect to the vector y € R, and for a fixed v it is a linear function
with respect to X.

If @(x,y) is a bilinear functional, then for x;, X,, ¥;, ¥, €R and an
arbitrary real a the following conditions are valid:
D(Xy + X5, ¥) = P(Xy, ) + @(Xp, ),
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®(ax,y) = a®(%,y),
DX, Y1+ Y2) = P(X, Y1) + @(X,¥,),

® (%, ay) = ad(X,y)

An example of a bilinear functional is the dot product of vectors (x,y) on
R™ i.e.
(X,Y) = x1y1 + XY + -+ Xy

Let us consider a bilinear functional using coordinates of the vectors. Let
a space R be given by the basis vectors €, &,, ..., €,. It is obvious that any vector
of the space can be decomposed along the basis vectors, e.g. X,y € R have a

form:
n
B 2,8 4 %8y + o ¥ XS, = ingi,

=1

n
J=yiés + 128y + ot Waba= ) Vi,

i=1

Then, the bilinear functional can be expressed as follows:

(I)(f,}_}) == (p(xlé)l + xZé)z + ... + xné)n,ylé)l + yzé)z + ... + yné)n) -

(6.1)
n n n n

= Z 1y, @ (€),€;) = Z @ (8,€;) %y = z aij%;Y;
i=1j=1 ij=1 ij=1

where the coefficients a;; = @(&;,é;) depend only on the basis vectors, but are
regardless of the vectors ¥ and y themselves.

It is said that in the given basis, the bilinear functional @(%,y) is

represented by a bilinear form

n

D(X,y) = Z a;jX;jyj

i,j=1
Definition. The matrix A = [a;;]; j=1=n IS called a matrix of the bilinear

form relative to the given basis.
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Definition. The bilinear form is called symmetric if for any X,y € R, an
equality
P(x,y) = (), %)
is valid.,

In this case, we have a;; = a;;, i.e. the matrix of symmetric bilinear form

In any basis is symmetric.

Definition. The bilinear function is called skew-symmetric if for any
X,y € R, an equality occurs:
P(x,y) = -0y, %)
In this case, we have a;; = —aj;;, i.e. the matrix of skew-symmetric
bilinear form in any basis is skew-symmetric.
Definition. A bilinear form is alternating if and only if its coordinate
matrix is skew-symmetric and the diagonal entries are all zero, i.e. a;; =0,

Vi = j.

6.2. Quadratic forms. Basic concepts

Definition. A quadratic form is a bilinear symmetric form for X = y, i.e.
@ (x,x). Therefore, a quadratic form of n variables x4, x,,.., x,, is a polynomial

of these variables such that every term has degree two:

n n
DX, %) = Q(xq, Xz, ..., Xy) = z z Qi XX = z A Xi X, (6.2)

n
i=1 k=1 i,k=1
Herein, we take into account that a;;, = ay;.
If the variables xy, x,,..., x,, are considered as coordinates of the vector ¥

given in a linear n-dimensional space with a basis {e;} then the quadratic

i=1,n’

form can be defined as a scalar function of this vector, i.e.
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Q(x1, X5, .0, Xy) = F(?) (6.3)
Definition. A matrix A = (a;);x=1—n IS called a matrix of quadratic
form in a given basis of the space, and the matrix is symmetric, a;;, = ay;, in
any basis.
The quadratic form can be written in a compact matrix form:
Q(xq, X2, oy Xp) = x1(A11X1 + Q12X + - + AgpXy) +

+x3(ap1%1 + Appxy + o+ Agpxy) + o+ Xp(Apa Xy + ApaXy + o+ AppXy) =

n n a1 A12/2 ... a/2\ /%
= z z XX = (X1, %X2,..., Xp) 2/2 Gz .. Oon/2 x2
=1 k=1 A1n/2 Qn/2 ... Qpn Xn
or
Q(xy,xp,...,xy) =XT - A- X, (6.4)
X1
X2

where the coordinates of the vector are a column, X =
xn
Example 6.2. Compose a matrix A of the quadratic form such as Q =

3x% + 2x1X, — X1X3 + 2x5 + 6Xx,Xx3 — 5x3.

3 1 —=
A=| 1 2 3
. 3 5
2

If two quadratic forms have the same matrices, which differ from each

other only by the denotation of the variables, these forms are called equal.

6.3. Change of Basis

We now answer the question, how does a matrix representing a quadratic
form transform when a new basis is selected?

Let {x;};—1z and {yj}sz_n be the coordinates of the same vector % in two
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distinct bases {g;};—17 and {Zj}j:ﬁ in an n-dimensional linear space. The

transition from the basis {g;};—17 to a basis {Zj}jzﬁ is given by the following

relations:
P — — —
hy =C1191+C192+...+Ch1 gn
_)
2 = C12 51) + Cy; 9_2) +...+Cpy E; (6.5)
Lo
hy = Cin 01 + Con G +...4Cn G

Then, the coordinates of the vector x in the basis G = {g;};-15 are related to its

coordinates in the basis H = {/;},___as follows:

X =Cxg=Cy ==Y (6.6)
Ci1 Gz ... Ciq
where [ ¢21 €22 = C2n ) is the matrix of transition from basis {gi}i=tn tO
Cnl CnZ an
X1 1
. - v 2 N B/
basis {hj}j=1,n' and xg = X = andxy=y=Y=|",
Xn Yn

Expanding (6.6), we get
X1 = C1y1 + Crpyo+.. . +Cipyn

Xy = C1y1 + C2y2t+.. . +ConYn (6.7)

Xn = Cpayr + Cuayot. . +Cinyn
Then, we can talk not about the transformation of the basis by formulas

(6.5), but about the linear transformation of variables x,x,,.,x, and
V1, Y2, ¥y, OF the given quadratic form F(x).
The expression (6.7) in a matrix form looks like:
X=C-Y.
Given the formulas F(¥;) = XTA X and XT = (CY)T = YTCT, we obtain
F(X;)=YTCTA;CY
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On the other hand,
F(xp)=X"-Ay-X=F(¥)=YTAyY
Since the quadratic form does not depend on the denotation of variables, then
equating the right-hand sides of the quadratic form expression, we get
Ay =CT-A;-C (6.8)
The formula (6.8) presents the transformation of the quadratic form matrix
Let us consider the matrix Ay = CTA.C. Since Ay" = (CTA;CO)T =
(A0)T - (€T =CT- A" -C=CT-A; - C, then Ay = Ay", therefore, the
matrix is a symmetric matrix that defines the quadratic form.
It follows from the last equality that
det Ay = (det C)? - det A, (6.9)
Since C is a transition matrix, it is non-singular, and (det €)? > 0 as a

result, the matrices Ay, A always have the same signs.

Example 6.3. Write the expression of the quadratic form F(X) = x¥ +
4x,x, + 2x% in a new basis of the vectors ﬂ = (1,3), Z = (—1,2).

Solution. The matrix of the quadratic form in the initial basis is A; =

A, = (% ;) Then, compose the transition matrix from the “old” basis to a new

1 -1
3 2
quadratic form looks like

an=cac=(2 )G DG =0 9

In turn, the quadratic form in the new basis is

F(y) = 31yf + 18y,y, + v3.

basis H. Thus, C = ( ) Finally, according to rule (6.8), the matrix of the

6.4. Classification of Quadratic Forms

Definition. The rank of a quadratic form matrix is called a rank of the
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quadratic form.
If Rg4 =n (n is a space dimension), then the quadratic form is called

non-singular, otherwise it is singular.

Definition. The canonical quadratic form F(X) is a type of a quadratic
form, whose a;, =0, if i # k, and a;; # 0, if i =k, i.e. the form does not
contain the products of distinct variables and can be presented in the form:

F(%) = A% + 132+ + x5 2

The basis, where such form occurs is called a canonical basis.

Definition. The normal form of the quadratic form F(¥) is its canonical
form, in which the coefficients before the squares of the variables (excluding
zeros) are equal to + 1.

Definition. A quadratic form F(X) is positive definite if V¥ = 0,
F(¥)>o.

Definition. A quadratic form F(X) is negative definite if V¥ = 0,
F(¥)<o.

Theorem (Sylvester's law of inertia for quadratic forms). For any way

of reducing a quadratic form

n

_)
F(x) = z a;jXi Xy
ij=1
with real coefficients a;; € R to a sum of squares

n
Z bi)’iz
i=1

by a linear change of variables ¥ = C ¥, where C is a non-singular matrix with

real coefficients, the number of the coefficients b; of a given sign in the
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canonical quadratic form is an invariant of F(%'), i.e. does not depend on a

particular choice of diagonalizing basis.

Expressed geometrically, the law of inertia says that all maximal
subspaces on which the restriction of the quadratic form is positive definite
(respectively, negative definite) have the same dimension. These dimensions are

the positive and negative indices of inertia.

Theorem (Sylvester's criterion). A quadratic form F(?) IS positive
definite if and only if all minors taken from the top left corner of the quadratic

form matrix are positive, i.e.

all alz " alk
— a21 a22 " azk

D, > 0,Vk = 1,n, where D, =
Ag1 Qg2  -.. Qgg

Theorem. A quadratic form F(Tc’) IS negative definite if and only if the
signs of all minors taken from the top left corner of the quadratic form matrix D;
alternate, starting with a minus:
D; <0, D,>0, D;3<0O,...

Example 6.4. Investigate the significance of the quadratic form F(X) =

_xlz - 6x22 - 6X32 + 12xle - 12x1X3 + 6X2X3.

Solution. Find a positive(negative-)definiteness of a quadratic form given

-11 6 -6
A= ( 6 -6 3 )
-6 3 -6

by the matrix in the form:

1 e ~11 6 -6
Dy =-11<0,D, =", _6|=30>0,1)3= 6 -6 3|=-81<
6 3 -6
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Since the signs of the minors alternate from minus, the quadratic form is

negative.

6.5. Lagrange Reduction of Quadratic Form to Canonical form

Theorem. Any quadratic form can be reduced to a canonical form by
some non-singular linear transformation. That is, there is a basis in which this
form is reduced to the sum of squares.

Lagrange's method consists in the following. One may assume that not all
the coefficients in (6.2) are zero. Therefore, two cases are possible.

1. A quadratic form contains the square of at least one variable x;, i.e.
da;; # 0

In this case, we need to group all the terms containing this variable, and
complete the square so that the remaining terms do not contain the variable x;.
After that, the remaining terms form a quadratic form of the (n-1)-th order. After

finite number of similar steps one can reduce the form to a sum of squares.

Example 6.5. Reduce the quadratic form to the canonical form:
F =9x2 + xyx, + 6X1x3 + x2 + x5 — 4x,x3 + 2Xx,X, — 8x3%,
Solution. This quadratic form contains squares of x;, x,, x,. Select any of
them, for example x,, and group all the members that contain this variable:
(X2 + x;X, — 4%,X5 + 2Xx,%,4) + 9x% + 6x1%3 + x5 — 8x3x, + 4x5 — 8x3X,.

Complete the square with respect to x,:

2
1 1
(x2 +2x; — 2x3 + x4) — fo — 4x% — xZ + 8xyx3 + 4X3X, — X1 X4.

1
Then you can write F(¥) as:

F =y?+F(%)
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where

2
F,(%) = 34_5x12 — 4x2% + 8xyx3 — 4X3X, — X X4 = —4 (x3 —x; + %x4) +

Y2

51
fo + xZ — 5x1x4,

or
F, = —4y? + F,(%),
where
5 5 13
F(¥X) = Tlxlz + xZ — 5x;x, = (x4 - Exl) + 7xf.
~—————— bt
V3 Ya

Finally, F(%) looks like:
13
F(V) =yt — 4y} + 5+ 9i,

where we denote;

(6.10)

The system (6.10) establishes a connection between the new coordinates
and the old ones. One can find a matrix of transition from the old basis to the

new one by expressing the old variables through new ones:

(X1 = Y4
5
x4=y3+§y4
1 5 1 1
<x3ZYZ+Y4_§(}’3+EV4)ZYZ_E%_Z}%
1 1 1 5
Xo =Y1—5Vat2\V2—5Ys—7Va) — Vs —5Va =
2 2 4 2
1 1 5
L ZY1+2)’2_23’3<_E+§+§)

or
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(X1 = Va4 0O 0 O 1
o 7\
Xy =Y1+2y; —2y;3 5 Va 1 2 =2 )
1 1 = (C = 1 1
X3ZYZ_§)’2—Z)’4 0 1 5 T
5 \ 5
kx4=3’3+53’4 0 0 1 2
Let's check result using the formula A, = CT - A; - C.
0 1 0 0 1 /O 090 17\
o 2 1 o\ (2?2 73 3 0 1 2 -2 —=
a,=lo —2 -1 1|12 L
H= -2 -3 13 1 =2 101 -2 ——|7
7 1 5)\3 -2 0 -4 2 54
2 4 2 O 1 -4 1 \O 0 1 E/
1 0 0 O
0 —4 0 O
=10 0 1 O
0O 0 O 13
2

2. A quadratic form has no squares of variables, i.e.

of the coefficients a;; # 0, for example a;, # 0.

In this case, first of all, a replacement is introduced:

X1 =Y11+Y2
X2 =YV1— )2
4353:}’3
Xn = Yn

all a;; = 0, and some

(6.11)

System (6.11) is a transition to a new basis in which the quadratic form

will have squares of variables. That is, we can reduce the form using the

previous scheme.

Example 6.6. Reduce F = x;x, — 2x,x3 + 4x,x5 to the canonical form.

Solution. Introduce the replacement (6.11):
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X1 =Y1+Y2
X2 =Y1—Y2.
X3 = Y3

Then, the quadratic form with respect to new variables looks like:
F(¥) =y2 -y =201 +y2) - 3 + 41 — ¥2)¥3
= y{ — Y7 + 2y1y3 — 6Y2¥3

Next, combining the variables and completing the squares, we get:

F =i +2y1ys +y3) =y3 —¥; = 6y2¥5 =
(V1+y3)?

herein, new variables are introduced such that

= 1 +ys)" — (V3 + 6372 +93) +8y] =20 — 25 + 823

Zq Y2+3y3=2; z3

The final relationship between the coordinates is

Z1=y1tY3 Y3 = Z3 X3 = Z3
Zy =Y, +3Y3 =>{ Y2 = 2, — 323 = Xy = 2y — Zp + 273,
Z3 = Y3 Vi =121 —Z3 X1 =21+ 2, — 4z

or

Xy = Zy — Zy + 223,

{xl == Zl +ZZ - 4‘Z3
X3 = Z3

It follows from this system, the transition matrix takes a form

1 1 —4

C=(1 -1 2)

0 0 1
Let's check it by using the formula: 4, = CT - A - C.
110/0‘_1\11—4 1 0
Ae=<1 -1 o)l 1 |(1 1 2>=<0 1

—421\502/001 0 0
—1 2 0

N[ =
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6.6. Quadratic Forms and Principal Axes

Let us be given a quadratic form F(¥) in the Euclidean space with an

orthonormal basis, {fi}, _15- Let x1, x5, x3,.., x, be the coordinates of the vector

X in this basis. Since the quadratic form matrix is symmetric, this matrix can be
considered as a matrix of the self-adjoint operator A in the orthonormal basis.
It is known that the matrix of a self-adjoint operator takes a diagonal form

in an orthonormal basis {e.},_i=. generated by its eigenvectors. So, if we

choose a transformation ¥ = Py providing orthogonally diagonalize matrix A,
then a new quadratic form will be y7A4,y, where A, is a diagonal matrix with

the eigenvalues A; of A on the main diagonal, that is,

/11 0 0 yl
- - - - O A 0
XTAX =yTAy={1 Y2 - W}, "7 0 yz

0 0 A

= Myi + Ly2 + .+ A2
Thus, we have the following result, called the principal axes theorem:

Theorem: If A is a symmetric n X n matrix, then there is an orthogonal
change of variable that transforms the quadratic form ¥7AX into a quadratic
form T Dy with no cross terms. Specifically, if P orthogonally diagonalizes A,
then making the change of variable ¥ = Py in the quadratic form X7 A% yields

the quadratic form
F(Z)=%T A% =§TA.5 = My} + Y3 + o + 1,02 (6.12)

in which A, A,, ... , 1, are the eigenvalues of A corresponding to the

eigenvectors that form the successive columns of P, and y,,y,,..,y,, are the

coordinates of the vector X in the new basis.
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The eigenvectors associated with the eigenvalues Ai(i = ﬁ) form lines
called the principal axes of the quadratic form.

The transition from the natural basis to the principal axes basis is fulfilled
by the orthogonal matrix P. Thus, the matrix A of quadratic form is related to the
matrix Ae in the basis of eigenvectors by the formula:

A,=PT-A-P.

It follows that the reduction of a quadratic form to the principal axes
coincides with the algorithm of diagonalization of Hermitian matrices. Thus, to
reduce a quadratic form to the canonical form using an orthogonal
transformation, it is necessary to perform the following steps:

1. Compose a matrix A of square form

2. Find the eigenvalues of this matrix and write the form in the principal

axes.

3. Create an orthonormal basis {ek}Z:1 using eigenvectors associated with

the known eigenvalues.
4. Compose the orthogonal matrix P of the transition from the natural basis

to the basis {e;} where the quadratic form matrix is diagonal, i.e. the

k=1’

quadratic form takes a form (6.12) with respect to the principal axes.

Example 6.7. Find the orthogonal transformation that reduces a quadratic
form F(¥) = 17x? + 14x2 + 14x2 — 4x,x, — 4x,x; — 8x,; to the canonical
form and write down it.

Solution.

1. Let's compose the matrix A:

17 -2 =2
A=[-2 14 -4
-2 -4 14
2. Find eigenvalues and eigenvectors of this matrix. Let's compose the
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homogeneous system of equations AxX = AX, i.e.

(17 — Dxy — 2x, — 2x53 = 0,
—2x1 + (14‘ - A)xz - 4x3 == 0,
—2x; + —4x, + (14 — Vx5 = 0.

Let's construct the characteristic equation: p(1) = det(A — AI) =0

17 -2
—2
—2

=(18-21)

(18-D((17-21)(10-2)—8) = (18 —DN(A*> — 271+ 162) =0 =

17-4 -2 -2
pM=| -2 14-1 -4 =0
2 -4 -l
2 =2 17-1 -2 -2
14—2 -4 |=(8-D| -2 14-21 -4 =
~18+1 18+4 0 =1 1l
17-1 -4 -2
2 10-1 —4{=as-n|" 4 |-
0 0 0

3. Find the eigenvectors:

Alzg

/11=9,/12 =A3 =18

After substituting this first eigenvalue in the homogeneous system, we find the

solution of the system as follows:

8 -2 -2 4 -1 -1 0O -9 9
-2 5 —4|~|-2 5 -4 ~lo 9 -9
_2 —4 5 —2 —4. 5 r,—T3 _2 _4 5
r1+2713
xZ == X3
—2x; = 4x, —5x3 = —2x; = 4x3 — 5x3 = —x3 => x; = %
X1 | X2 | X3
e | 1] 22
1
That is, e; = | 2 | is the eigenvector associated with A, = 9.
2
Similarly,
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-1 -2 =2
<—2 —4 —4> "’(1 2 2):> X1 = —2x2 — 2x3

X1 | X2 | X3

e, |2] 10

e | 2] 0|1

—2 —2
That is, e, = ( 1 ) and e; = ( 0 ) are the eigenvectors associated with 1, =
0 1

18.

The system of vectors e, e, e; is not orthonormal, i.e. the vectors are not
pairwise orthogonal, e.g. (e_;e_g’) = 4 + 0 and are not unit length.

4. Let’s orthogonalize e, and e, using the Gramm-Schmidt process:

82 = 62;
G=Fra-do (@) =(@Ge) +a- (el =0
(ese5) _ 4
=" "5
(ez.2)
— 4 8 4 2 4
& = (200 - (-210) = (-2+5;-531) = (-5 -2:1),
Thereby, the system of vectors e; eje’ is orthogonal. Let's make it
orthonormal:
o_a e
70—~ \3°3°3)
e, 1
— 2
ZTZ_(_Z; 1;0),
2" el Vs
H
g

ﬁﬂ'ﬁ‘l‘l

3/V5

_e_;_ 1 (2.4_1)_(2_4_5)
> el \/4 16 5° 5 3v5  3v5 3V5/
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5. Construct a matrix of transition from the old basis to a new basis of the

eigenvectors. So, each column of the matrix is the appropriate eigenvector:

\ﬁ NS _ﬁ)
2 5
P=\Z 0 —
3 3v5

—

91 9z 93
Let v, v, V5 be the coordinates of the vector ¥ in the basis g; , g, , ga. Then

X=P-Yy,
or
1 2 2
/3 5 345
X1 _p V1 _|E i _ 4 | V1
X2 | — Y2 | — 3 V5 375 Y2
X3 Y3 2 5 Y3
— 0 —
3 3v5
_1 2 2
x1—3y1 53’2 3\/5}’3
2 1 4

X2 =30 +EJ’2 +ﬁ3’3

2 5
X3 =301 + ﬁ%

Finally, the quadratic form in the principal axes looks like:
F(Yy) =9y? + 18y2 + 18y?
One can verify the diagonal matrix of the quadratic form by using the

transformation of the matrices: 4, = PT - A - P.

6.7. Simultaneous reduction of two quadratic forms to the canonical

form

The problem of reducing simultaneously two quadratic forms to the

145



canonical form does not always have a solution. But it can be done if certain
conditions are fulfilled.

Theorem. If Fy(¥)=XTAX is an arbitrary, and F,(¥) = X"BX is
positive define quadratic forms, then there is a non-singular transformation that
reduces both the forms to the canonical form, herewith the form F,(%¥) is a
normalized form.

Proof. By Lagrange's theorem, any quadratic form can always be reduced
to a diagonal form. According to the Sylvester's criterion and the laws of inertia,
any positive define quadratic form in a canonical form has all eigenvalues 4; >
0. In addition, if all A, > 0 then we can find a transformation that all A, will be
equal to unity. That is, there is a transformation C such that

By, =CTBC =1 (6.13)

If we apply this transformation to the first quadratic form F,(%), its
matrix will change according to the rule (6.8), i.e.

Ay = CTAC. (6.14)

Next, find the orthogonal transformation D, which diagonalizes A, as
follows:

A, = DTA,D = diag(...).

Then, we apply the same orthogonal transformation to the quadratic form

F,(%). In this case, the matrix B, = I. Thus, we get
B,=D"B,D =DTID=A,=D"D =1.

Therefore, since the orthogonal transformation does not change the unit
matrix, the simultaneous transformation of quadratic forms F; (%) and F,(%) is
possible. This is what was to be proven. &

Find the orthogonal transformation D. Since the orthogonal
transformation takes place at the second step, the quadratic form is considered in

the base H, i.e.
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det(Ay — AI) = 0.
Substituting (6.13) and (6.14) in this equation, we get
det(CTAC — ACTBC) = 0,
det(CT(A - AB)C) = 0.
According to the properties of the determinant:
detC? -det(A — AB) = 0.
Since C is non-singular matrix, then detC # 0 and
det(A—AB) =0 (6.15)
Let's write down the corresponding SLAE for search of eigenvectors:
(A4y — DX, =0
(CTAC — ACTBC)Xy; = CT(A — AB)CXy = CT(A — AB)X,; = 0.
So, we got the system in the initial basis:
(A-2AB)X =0 (6.16)
Thus, for the simultaneous reduction of two quadratic forms to the
canonical form, it is necessary to solve successively the problems (6.15) and
(6.16).

Example 6.8. Reduce simultaneously two quadratic forms to the canonical
form:
F, = 8x? — 26xy + 21y?, F, = 10x% — 34xy + 29y2.

Solution. Let's write the matrices of these quadratic forms:

(8 -—13 (10 -17
A = (—13 21 ) 4z = (—17 29 )
F, is a positive definite form. Indeed,

10 -17
=17 29

Thus, by the appropriate transformations we get a diagonal form of F;, and a

normalized from of F,.

Solve the equation (6.15), bearing in mind that A = A;, B = A, are the
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corresponding matrices of the quadratic forms. Then,

8—-104 —13+174) _
—13+1712 21 -291

The solutions are the values A, = 1and 1, = —1.

det(A—AB)=0 = 0.

Thus, in the new basis, the quadratic forms look like:
Fi = Lx 2 + Ly = x> =y 2 and Fy' = x,% + y, 2
Now, we need to find the basis that allows diagonalizing these forms. To
do it, we have to solve the system of equations (6.16) at
A =10

(7
X1 | Xy

2 |2 1

J~(-1 2)=x =21,

e; = (i) is the first eigenvector;

and, similarly, at
Az - —1

( 18 =30
—-30 50
X1 | X2

2 | 5] 3

)~(-3 5)=3x =51,

e, = (g) is the second eigenvector.
Compose a matrix of transition, where their columns are the eigenvectors:
_ (2 5
c=( ; 3).

Then, the transformation between the “old” and “new” coordinates looks like:
X\ _ (2 5\(%1 x =2x, +5y;
(y) N (1 3) (yl) = {y =x; + 3y,
It could be verified by direct substituting the above written transform to the

quadratic forms B F; and F, to get F{ and F,.
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Appendix 1

A short English-Ukrainian vocabulary

adjoint
algebraic cofactor
associative

basis

— arbitrary

— natural

— orthonormal
bilinear form

— alternating

— (quadratic

— symmetric

— skew-symmetric
block matrix
bracket

column
commutative
complete square

decomposition
determinant
diagonalizable
dimension
direct sum
distributive
domain

A
[IPUETHAHUN, CIIPSIKEHUN
anreOpaiuHe JOTOBHEHHS
acoIllaTUBHUN
B
0aszuc
— JIOBUIBHUI Oa3uc
— KaHOHWYHMI 0a3uc
— OpTOHOPMAaJIbHUN 0a3uc
OuniHiliHa Gpopma
— 3HAKO3MiHa
— KBaJIpaTHYHA
— CHMETpUYHA
— KOCOCHMETpHUYHA
0JI04Ha MaTpUIIS
Ty’KKa
C
CTOBITYHK
KOMYTaTHUBHUU
BUIIJTUTH TIOBHUH KBaJIpaT
D
PO3KIIaJaHHs
BU3HAYHHUK
JlaroHaji30BaHUM
BUMID
npsiMma cyma
TUCTPpUOYTUBHUN

001acTh
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eigenspace
eigenvalue
eigenvector

form

Gram — Schmidt orthogonalization

— Gram determinant
— Gram matrix

homogeneous

intersection
invertible

linear span

linear

— dependency
— independency

matrix
— block
— change-of-basis
— Gram
— identity
— inverse
— Hermitian
— reflection
— sparse

E
BJIACHUM IIPOCTIP
BJIACHE 3HAYCHHS
BJIACHUM BEKTOP
F

anreOpaiuHuil 00'€KT y BUTIISIL

MOJIIHOMIAJIbHOTO BUPa3y 3MIHHUX

G

oproronHam3zanis ['pama — I1Iminra

BU3HAYHUK ['pama
marpuus [ pama
H
OJTHOP1THHIMA
I
MepEeTUH

HEBUPOKEHUIN
L

JIIHIAHA 000JIOHKA

JIHIMHA 3aJI€)KHICTD
JIHIMHA HE3aJIEKHICTD
M

MaTPHIISA
— Oy04HA MaTpHUILI
— MaTpuIs MePEeTBOPCHHS
— wmatpuis ['pama
— OJIWHWYHA MaTPHIIS
— o0epHeHa MaTpuULs
— EpmitoBa matpuris
— MaTpulls BiA3epKAICHHS

— PO3piKEHA MaTPHILS
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— sguare

— transpose

— transition

— triangular
minor

— additional

— basic
multiplicity

operator
— adjoint
— nonsingular
— orthogonal
— positive define
— projection
— self-adjoint
— semi-definite
— unitary
orthogonal
— complement
— projection

pairwise

pivot

principal axis

polynomial
— annihilating
— characteristic
— n-th degree

— KBaJlpaTHa MaTpUIIL

— TPAHCIIOHOBAHA MaTPHUIIS

— MAaTpUI EPEXO0Ty

— TPUKYTHA MAaTPUIS
MIHOD

— JIOJATKOBUH

— TOJIOBHUM

KpaTHICTh

O

ornepaTop
— CIPSDKEHUUN ONepaTop
— HECHUHTYJISIPHUU OIEepaTop

— OPTOTOHAJIBHUU OIIEPATOP

— J0JAaTHO BU3HAUYEHUU OIEPATOP

— omnepaTop IPOEKTYBAHHS
— CaMOCTIPSDKEHHUH OTIepaTop
— HamiBBU3HAYCHHI OrepaTop

— YHITapHUH onepaTop

— OpTOroHajbHC JOIMOBHCHH:A

— OpTOrOHAJIbHA MPOEKITiS

P

MIOTIAPHO
BEAYYHI €JICMCHT

TOJIOBHI OCl1

— AHITUIALIHHUA IIOJIHOM
— XapaKTEPUCTUIHHUU ITOTIHOM

— MOJIHOM N-TO MOPSIAKY
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quadratic form

rank
— matrix
row
— reduced row echelon form

simultaneously
skew-symmetric
spectral decomposition
space

— Euclidean

— linear

— normed

— vector
subspace

transformation

union

vector algebra

Q

KBaJpaTu4Ha ¢hopma

R

paHr
— paHr maTpuii
PAIOK

— 3BeJleHa KaHOHIYHA (opma

OJIHOYACHO
KOCOCUMETPUYHUH
CHEKTpaJbHE PO3KJIaJaHHSA
POCTIp

— npoctip EBkiiga

— JNHIAHUNA TPOCTIP

— HOPMOBAHUU IPOCTIP

— BEKTOPHHI HPOCTIp

H1ITPOCTIP

MIEPETBOPEHHS

00’ eTHaHHA

\

BEKTOpHA ajnredpa
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