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INTRODUCTION 

Mathematical methods play a vital role in various scientific and engineering 

disciplines. Therefore, students, irrespective of their chosen field, require 

indispensably a solid theoretical foundation in mathematics to address real-world 

challenges effectively. Linear algebra provides a powerful toolkit for solving a 

wide range of problems across various disciplines, from physics and engineering 

to computer science and economics. Its methods are fundamental in analyzing and 

manipulating data, modeling physical systems, and understanding complex 

structures. Thus, proficiency in linear algebra is indispensable for students 

pursuing careers in these fields.  

Moreover, in today's interconnected world, where collaboration knows no 

borders, the ability to communicate mathematical ideas effectively across 

linguistic and cultural boundaries is paramount. Ukrainian technical universities 

are increasingly engaged in collaborative research and projects with international 

partners. Hence, students equipped with knowledge of international mathematical 

terminology can seamlessly integrate into these collaborative environments. They 

can contribute meaningfully to interdisciplinary teams, draw upon a diverse range 

of perspectives, and tackle complex challenges with confidence. Therefore, 

fostering proficiency in international mathematical language not only enhances 

students' academic and professional prospects but also fosters global cooperation 

and innovation in science and engineering.  

Hence, recognizing the crucial role of linear algebra in engineering 

education and the necessity of understanding international mathematical 

terminology, we felt inspired to write the textbook "Linear Algebra: A Textbook 

for Engineering Students". This textbook offers a mathematical course tailored 

for undergraduate students at technical universities. It has evolved from a series 

of lectures delivered by the authors over the past decade at the National Technical 
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University "Kharkov Polytechnic Institute", including students enrolled in 

mathematical courses taught in English. 

 The textbook consists of six chapters, each designed to provide a 

comprehensive understanding of linear algebra concepts. The opening chapter 

introduces fundamental theoretical principles concerning matrices and 

determinants, laying the groundwork for proficient solving and analysis of linear 

algebraic systems. Additionally, the chapter delves into the definition and 

operations with block matrices, offering a detailed examination of this essential 

topic. In the subsequent chapter, the focus shifts to the exploration of linear 

spaces, providing insights into their key concepts, properties, and applications in 

solving linear algebraic problems. This also includes a detailed explanation of 

coordinate transformation with a change of basis in a linear space and operations 

on subspaces. Moving forward, the third chapter serves as a thorough introduction 

to linear operators, shedding light on their significance and applications. As linear 

transformations play a central role in linear algebra, linear transformations are 

thoroughly considered in this chapter of the textbook. Additionally, this chapter 

introduces eigenvalues and eigenvectors, highlighting their significance in 

decomposing matrices into simpler formats and uncovering essential system 

characteristics. The fourth chapter focuses on concepts related to Euclidean space 

and orthonormal bases, providing a solid foundation for understanding geometric 

aspects within the linear algebra. It delves into topics such as inner products, 

orthogonality, and projections. Additionally, the chapter explores the Gram-

Schmidt process for orthogonalization and the concept of minimization problem. 

In the fifth chapter, the discussion expands to encompass advanced topics in linear 

algebra. These include a detailed examination of adjoint and self-adjoint 

operators, unitary and orthogonal operators, and an in-depth exploration of their 

fundamental properties. This chapter goes deeper into the intricate aspects of these 

mathematical constructs, providing students with a comprehensive understanding 
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of their applications and significance within the field of linear algebra. The final, 

sixth chapter considers bilinear and quadratic forms, providing a comprehensive 

exploration of these mathematical constructions. It covers various aspects, 

including their matrix representation, eigenvalues, and eigenvectors associated 

with bilinear and quadratic forms, discussions on positive definite, negative 

definite, and indefinite quadratic forms, as well as Sylvester's law of inertia for 

quadratic forms and diagonalization. Each chapter is enriched with numerous 

examples, enhancing the clarity and comprehension of the subject matter. 

 This book is recommended for students at technical universities enrolled in 

the Higher Mathematics course conducted in English, as well as for foreign 

students and universities lecturers seeking assistance in developing their own 

lecture materials. Additionally, it is valuable for anyone with an interest in 

acquiring knowledge of linear algebra using mathematical terminology in 

English. 
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Chapter 1. MATRICES AND DETERMINANTS 

 1.1. Basic Concepts of Matrices 

The basic concepts of the matrices theory and determinants were 

presented in the course "Algebra and Analytical Geometry". In addition to these 

basic concepts, linear algebra studies finite, countable as well as infinite-

dimensional vector spaces, linear operators, methods for finding their 

eigenvalues and eigenvectors, quadratic forms and methods for their reduction 

to canonical form, as well as many other topics that require knowledge of 

mathematics. operations with matrices and determinants. Therefore, we will 

begin this course by reviewing matrices and determinants.  

First of all, let's remember what is called a matrix and what arithmetic 

operations with matrices can be performed.  

Definition. A matrix A of size n×m  is called a set of nm   elements ija  

written  in the table  with m rows and n columns, which has a form: 

11 12 1

21 22 2

1 2

...

...

... ... ...

...

n

n

ij

m m mn

a a a

a a a
A

a

a a a

 
 
 
 
  
   

In more compact form the matrix is denoted as follows:  

 
,

ij
m n

A a , where mi ...1 , nj ...1 . 

 The individual elements ija  are also called entries or components of the 

matrix A. The first subscript is the number of the i-th row and the second one is 

the number of the j-th column where the component ija  is located. Note that 

here m is a total number of rows, while n is a total number of columns in the 

matrix A. 

Definition. Matrices A and B are called equal if they have the same size 
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and their corresponding components are equal.  

Definition. A matrix with all zero components is called null matrix or 

zero matrix. 

Definition. A matrix is called a square of the order n if the number of 

rows coincides with the number of columns, i.e. m = n. 

Definition. A square matrix is called diagonal if all the components 

except those located on the leading (main) diagonal ( 11a , 22a ,…, nna ) are equal 

to zero. The diagonal matrix is denoted as  

 nn2211

nn

a,...,a,adiag

a

a

a

A 























...00

0...00

0...0

0...0

22

11

.  

Definition. A diagonal matrix in which all the components of the leading 

diagonal are equal to 1 is called an identity (unit) matrix and is usually denoted 

by the letter E or I. 

When it is necessary to distinguish which size of identity matrix is being 

discussed, we will use the notation 𝐼𝑛 for the 𝑛 × 𝑛 identity matrix. 

Definition. The matrix АТ is called transposed to the matrix A, if it is 

obtained from the given matrix A by replacing the columns with rows or vice 

versa, i.e. 























mnnn

m

m

T

aaa

aaa

aaa

A

...

............

...

...

21

22212

12111

 

Definition. If , , 1, , 1,T
ij jiA A a a i m j n      then the matrix is called 

symmetrical matrix.  

Definition. The matrix A is called a skew-symmetric matrix if 
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, , 1, , 1,T
ij jiA A a a i m j n      

 

Definition. A matrix is called a sparse matrix if its zero components 

predominate over non-zero components. 

An example of the sparse matrix is any diagonal matrix. 

A square matrix A of the n-th order is called K-diagonal (where K is a 

positive odd number) if  

0=aij  provided  that 
2

1


K
ji  

Example of a three-diagonal matrix: 



























.....................

0...00

0...00

0...00

0...000

454443

343332

232221

1211

aaa

aaa

aaa

aa  

 

 1.2. Basic Operations on Matrices 

Since the matrices are mathematical objects, it is naturally to introduce some 

algebraic operations on them such as addition, subtraction and multiplication. 

Definition. The sum of two matrices A and B of the same size is called a 

matrix C=A+B with the components defined by the elementwise sum of the 

corresponding original matrices, i.e. 

С=А+В,   njmibac ijij ,1,,1,ij   

It is obvious that the matrix C has the same size as the original matrices. 

Definition. The multiplication of the matrix A by a scalar  is called a 

matrix С=А whose components are computed by multiplication of the 

corresponding components of the matrix A by the given scalar , i.e. 

njmiacij ,1,,1,ij   
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Definition. The multiplication of the matrix A of size n×m  by the matrix 

B of size p×n  is called a matrix C = AB of the size p×m  with components 

defined as follows: 

pjmibac
n

k
kjikij ,1,,1,

1

 


 

Let us remain on some special cases of matrix multiplication. 

 

1. The rule of multiplication of diagonal matrices. 































































nnnnnnnn ba

ba

ba

b

b

b

a

a

a

...00

............

0...0

0...0

...00

............

0...0

0...0

...00

............

0...0

0...0

2222

1111

22

11

22

11

. 

That is, as a result of multiplying two diagonal matrices A and B we 

obtain a diagonal matrix C, whose diagonal components are calculated as a 

product of the diagonal components of the original matrices, i.e. 

     nnnnnnnn ba,,ba,ba=b,,b,ba,,a,a ...diag...diag...diag 2222111122112211   

 

2. The rule of multiplying a matrix by a diagonal matrix.  

Rule A: multiplication of the diagonal matrix by the matrix on the left 































































nnnnnnnnnn

n

n

nnnn

n

n

nn adadad

adadad

adadad

aaa

aaa

aaa

d

d

d

...

............

...

...

...

............

...

...

...00

............

0...0

0...0

21

22222222122

11112111111

21

22221

11211

22

11

 

That is, if matrix A is multiplied by a diagonal matrix on the left, we obtain a 

matrix whose rows are multiplied by the corresponding diagonal element located 

in the corresponding row. 
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Rule B: multiplication of the matrix by the diagonal matrix on the right 































































nnnnnn

nnn

nnn

nnnnnn

n

n

dadada

dadada

dadada

d

d

d

aaa

aaa

aaa

...

............

...

...

...00

............

0...0

0...0

...

............

...

...

222111

222221121

122121111

22

11

21

22221

11211

 

If the matrix A is multiplied by the diagonal matrix on the right, it is 

equivalent to multiplying each column by the element of the diagonal matrix 

located in the corresponding column. 

This result explains why  11,1,...diag ,=I  is called an identity (unity) 

matrix. 

 

 1.3 Block matrices 

If a matrix is very large and/or the matrix contains groups of the 

components that can be collected together based on some common properties, 

then a special algebraic construction called a block matrix is used instead of an 

extended matrix. 

 

Definition. If all components of а matrix are matrices of certain 

dimensions then it is called a block matrix, and the components of such matrix 

are called blocks. 

Agreement of the blocks means that all blocks located in one row of the 

block matrix have the same number of rows, and in one column – the same 

number of columns. The number of rows k and the number of columns l of the 

block matrix of size n×m  form its format (or block size) l×k . The next 

abbreviation is used for block matrix:  ijA=A , where the symbol ijA  denotes 

the block, i.e. a matrix located on the i-th row and j-th column. 

Definition. Combining the components of the matrix into blocks is called 
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grouping, the reverse operation is a deployment. 

The purpose of grouping is to reduce the real size of the matrix and, as a 

consequence, to simplify the algebraic operations performed with it.  

Two block matrices A and B are equal to each other, if the equality

ijij B=A  is valid for all the relevant blocks. 

However, a matrix can be divided into blocks in many ways, that is the 

matrix can be partitioned with block matrices of different sizes. 

 An example block matrix is presented below: 

























































































1234

3123

1202

5321

1234

3123

1202

5321

1234

3123

1202

5321

1234

3123

1202

5321

A  

 

 Let’s consider the matrix  5,5,5=A  with the same components. Let the 

matrices be  5,5=C ;  5=D . Let's form block matrices  DC,=B ,  CD,=L  

and  DD,D,=K . Matrices B and L have the same format but different block 

sizes, and matrices B, L and K have different formats, while they all are derived 

from matrix A. 

Usually, to obtain a block matrix of the certain dimension, it is divided by 

a system of parallel lines (vertical and horizontal).  

 

 Example 1.1. 
































CB

BB
A

8743

6521

4343

2121

, where 









43

21
B , 










87

65
C . 

Square block matrix, which contains square blocks on the leading 

diagonal, and zero blocks outside of the leading diagonal, is called a block-
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diagonal matrix. 

An example of a block-diagonal matrix is presented below: 































22

11

0

0

8700

6500

0043

0021

A

A
. 

 

 1.3.1 Addition and subtraction of block matrices 

If the block matrices A and B have the same dimension and are partitioned in the 

same way, and ijA  and ijB  are their corresponding blocks of the same size, then 

to add (subtract) these matrices it is enough to add (subtract) the corresponding 

blocks of these matrices, i.e. 

     ijijijij B+A=B+A . 

Remark. If the matrices have different sizes, then the assembly operation 

cannot be performed that is the addition or subtraction of the block matrices is 

impossible. 

Example 1.2. Calculate: B+A=C 34 , where  















321

023
A , 












172

304
B  

Solution. 



















































9292

9824

3216

9012
3

1284

0812
4

C

B

A

 

Assume that the matrices are divided into blocks as follows: 

 1211, AAA  , 









1

3
11A , 














32

02
12A  
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 1211, BBB  , 











2

4
11B , 










17

30
12B  

       1212111112111211 34,343,34,434 BABABBAABAC  






















































9292

9824

321

90

128

08

64

212
 

 

 1.3.2 Multiplication of block matrices 

Above a multiplication operation was defined for matrices A and B under 

condition that the number of columns of matrix A is equal to the number of rows 

of matrix B. Then the product BA   is called a matrix 























mkm

k

k

cc

cc

cc

C

...

.........

...

...

1

221

111

, 

where 
n

=p
pjipij ba=c

1

,  
nj
miijaA
,1
,1


 ,  

kj
niijbB
,1
,1


 ,  

kj
miijcC
,1
,1


 . 

In the case of block matrices, we have to state the following rule:  

Rule: In order to multiply the block matrix  
nj
miijAA
,1
,1


  format n×m  by 

the block matrix 1,
1,

i nij
j k

B B 


     format k×n  with the corresponding sizes of 

blocks we should apply the following formula 1,
1, 1

,
n

i mij ij ip pj
j k p

C C C A B
 

    
 

 

Agreement between block sizes means that all multiplications of the 

matrices used in these formulas are correct. 

Remark. If there is no agreement between the block sizes, then the block 

matrices need to be expanded and grouped in another way. 

Example 1.3. Divide matrices A and B into blocks in different ways and 

multiply. 
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

















500

420

311

A  


















300

210

123

B  


















1500

1620

1233

BA  

Solution. 

a) 









2221

1211

AA

AA
A , 111 A ,  3,112 A , 










0

0
21A , 










50

42
22A , 











2221

1211

BB

BB
B , 311 B ,  1,212 B , 










0

0
21B , 










30

21
22B . 

























    

    

2221

1211

2222122121221121

2212121121121111

CC

CC

BABABABA

BABABABA

BA  

   3311111 BA ,    0
0

0
312112 








BA ,  311 C  

    121211211 BA ,    111
30

21
312212 








BA ,  12312 C  

  


















0

0
3

0

0
1121BA , 



























0

0

0

0

50

42
2122BA , 










0

0
21C  

  


















00

00
12

0

0
1221BA , 



























150

162

30

21

50

42
2222BA ,  











150

162
22C  



















1500

1620

1233

CBA . 

b) If the matrices are divided as: 



















500

420

311

A , 


















300

210

123

B , 
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then 











20

11
11A , 










4

3
12A ,   0021 A ,  522 A , 











0

3
11B ,  










21

12
12B , 021 B ,   3022 B . 























































0

3

0

0

0

3
0

4

3

0

3

20

11
2112111111 BABAC  

  





















































162

123

120

90

42

33
30

4

3

21

12

20

11
2212121112 BABAC

  005
0

3
002122112121 








 BABAC  

         15015000305
21

12
002222122122 








 BABAC  



















1500

1620

1233

C  

 

 1.4 The Rank of the Matrix and Rank Determination Methods 

Definition. The rank of the matrix A ( ARg ) is a maximum order of its 

nontrivial minors. 

The following statement is valid: elementary transformations of a matrix 

do not change its rank.  

Definition. The elementary transformations are called the following 

ones: 

1. Multiplication of any row (column) of the matrix by a non-zero 

number. 

2. Addition of any row (column), previously multiplied by the non-zero 

number, to another row (column). 

3. Interchanging two rows (columns). 
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4. Elimination of zero rows (columns) and elimination of the duplicate or 

proportional rows (columns) leaving only one of them. 

Two matrices 𝐴 and 𝐵 are said to be similar or equivalent if there exist 

elementary transforms such that the matrix A follows from the matrix B and vice 

versa. Equivalent matrices have the same ranks. 

The rank of a matrix can be found using two methods. The easiest of these 

methods is “converting matrix into row echelon form”. 

 

i. Converting the matrix into row echelon form. 

To find ARg  we can reduce the matrix to row echelon form, i.e. to the 

matrix that meets the following requirements: 

- the first non-zero number from the left (“leading coefficient“ or “pivot”) 

is always to the right of the first non-zero number in the row above; 

- rows consisting of all zeros are at the bottom of the matrix. 

The matrix converted into row echelon form looks like this 



































0...00...00

.....................

0...00...00

......00

.....................

......0

......

1

212222

11111211

rnrrrr

nrr

nrr

aaa

aaaa

aaaaa

, 

where r leading coefficients 11a , 22a , ..., 0rra .  

Thus, the rank of the matrix is a number of the non-zero leading coefficients, i.e. 

r=RgA . 

Example 1.4. 
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~

120

220

220

110

101

~

3

~

110

101

321

423

121

~
)5/(

4/
~

550

404

642

423

121

443

542

341

25

14

55

44





















































































rrr

rrr

rrr

rr

rr

rr

rr
 










































































100

110

101

~

000

000

100

110

101

~~

100

000

110

110

101

~

2/

~
35

323

535

434

33

rr

rrr

rrr

rrr

rr

. 

3ARg  

 

ii. Using the method of fringing minors. 

Theorem. Let the matrix A have a minor M of order r  0r  , and all 

minorities  1+r -th order, fringing M, are zero, then the rank of the matrix A is 

equal to r. 

Proof. By all bordering minors  1+r -th order are zero, then, by the 

theorem on the base minor, all columns of the matrix are a linear combination of 

its “r” columns. That is, the maximum number of linearly independent columns 

is equal to r RgA= r   

Example 1.5 Calculate the rank using the fringing minor’s method  

 

One can notice that that minor 0
12

34





. Let’s calculate its fringing minors. 

We can first interchange the 1st and 3rd columns. Then a non-zero minor will be 

in the upper left corner, and the resulting matrix B will be equivalent to A 
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( AB ~ ). 



















034124

35121

53343

B  

Consider the fringing minors. There will be 3 minors: 

046161646

124

121

243









; 

;01043668

104363424343024806346

3424

521

343











 

018404810

024

321

543









. 

So, 2Rg =A . 

 

 1.5. Laplace's theorem 

In the course of Algebra, we got acquainted with the concept of minor and 

algebraic cofactors of the element of a matrix.  

The minor of an element ija  is equal to the determinant of the matrix 

remaining after excluding the i-th row and j-th column containing this element, 

and is denoted as ijM .  

The algebraic cofactor of an element ija  is a signed minor, i.e. it is 

defined by the formula:   ij
ji

ij MA 


1 .  

Now we will generalize the definition of the minor of a matrix element 

and introduce the concept of the k-th order minor of the matrix. 
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Let’s consider a square matrix A. We can choose any k different columns 

and rows of the given matrix  nk ≤ . The components that stand at the 

intersection of these k rows and k columns will form a matrix of the k-th order. 

The determinant of this matrix is called a minor of the k-th order of this matrix 

A. 

The minor of the k -th order will be denoted as 

k

kj

iii
jjm=m

...
...

21

21
, 

where the lower subscripts indicate the numbers of the chosen k columns, and 

the upper ones indicate the numbers of the chosen k rows.  

 In particular, the minor of the n-th order of the matrix A with n rows and 

columns, i.e. 
n
nm12...

12... , is the determinant of this matrix: A=m n
n det12...

12... . 

Each element of the matrix is a minor of the first order.  

If we cross out in the given matrix columns and rows which generate a 

minor of the k-th order, the remaining components form a square matrix of the 

( kn - ) order. The determinant of this  kn - -th order matrix is called an 

additional minor to the minor m, which is generated by these k columns and k 

rows, and is denoted as k

kj

iii
jjM=M

...

...
21

21
. 

In particular, if the original minor of the first order is i
jm=m , that is an 

element of the matrix ija , then the additional minor is written as ij
i
j=MM=M . 

Example 1.6. 

 

31 j ,  62 j , 

21 i ,  42 i . 

52

8024
36 m  
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1309

8760

3467

5301

24
36 M  

 

Definition. Algebraic cofactors of minor m are called its additional minor 

multiplied by a factor:   kk jjjiii 


...... 21211 , i.e. 

  k

k

kkk

k

iii

jjj
jjjiiiiii

jjj
MA

...

...
.........

...
21

21

212121

21
1 


, 

or  

  k

k

k

k

iii

jjj
piii

jjj
MA

...

...

...

...
21

21

21

21
1  , where  




k

i
ii jip

1

. 

Below we present the Laplace’s theorem.  

It is a rule that allows us to express the determinant of a matrix as a linear 

combination of determinants of lower order matrices. 

 

Laplace’s theorem. The n-th order determinant,  is equal to the sum of 

the products of all its minors of the k-th order, which are selected on k rows, 

multiplied by their algebraic cofactors. 

  k

k

k

k

iii

jjj

iii

jjjn Am
...

...

...

...
21

21

21

21
. 

Similarly, the theorem is formulated in the case of k selected columns. 

 

Note. The Laplace’s theorem allows reducing the calculation of the 

determinant of the n-th order to the calculation of several determinants of the k-

th and  kn - -th orders. As the order of the determinant increases, more new 

determinants appear. Therefore, the Laplace theorem is effective in the case 

when there exist many zero components in the determinant. Then k rows (or 

columns) can be chosen so that most of the k-th order minors located on these 
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rows will be equal to zero. 

 

Example 1.7. Calculate the determinant: 

 

 

If we choose the 2-nd row and the 5-th one, then all the 2-nd order minors 

formed by the first and third columns with all the others will be zero. Therefore, 

it is necessary to take minors that are formed by the second, fourth and fifth 

columns. That is 

    



















131

312

224

1
54

53

031

112

124

1
24

13
det

52524252
A  

     

   















6461436154362612435

12126146

311

132

214

1
52

51 5452

 

    106922535363415153635172  . 

 

Example 1.8. Calculate the determinant: 

 

If the leading diagonal in the determinant  is covered by square matrices 
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without common components with determinants 1 and 2, and on one side of 

them all the components are equal to zero, then such determinant is called a 

quasi-triangular, and 21  . 

Indeed, if  

11 1

21 2

1

1,1 1, 1, 1 1,

1 , 1

... 0 ... 0

... 0 ... 0

... ... ... ... ... ...
Use Laplace's theorem ,

... 0 ... 0
choosing first rows

... ...

... ... ... ... ... ...

... ...

k

k

k kk

k k k k k k n

n nk n k nn

a a

a a

a a
k

a a a a

a a a a

    



 
 
 
 
 

    

 
 
 
 
 

 

  2121

1,

,11,1
...21

1

221

111

detdet

...

.........

...

1

...

.........

...

...








AA

aa

aa

aa

aa

aa

nnkn

nkkk
k

kkk

k

k
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Chapter 2. LINEAR SPACES 

 2.1 Basic Concepts and Examples 

Definition. A set of M elements 𝑥, 𝑦, 𝑧, …  of any nature is called a linear 

space if: 

 i. The rule of "addition" is defined. It means that for any two elements x  

and y  ( MyMx  ) there corresponds the third element Mz  , which is 

called the sum of the elements x  and y . 

 ii. The operation of multiplication by a number  is defined (herewith

CR   , , or   another numerical set). It means that Mx  and any 

number  there corresponds the element Mu  , which is called the product 

xλ=u , or λx=u .  

 iii. The abovementioned two rules are subjected to the following axioms: 

1о. Commutativity: 

 Myxxyyx  ,,   

2о. Associativity: 

     Mzyxzyxzyx  ,,,  

3о. A zero element exists 

 0  (zero space element) such that Mxxx  ,0 . 

4о. An opposite element exists 

  Mx  the opposite element   Mx   such that   0 xx . 

5о. A unity element exists: 

 1  (unity element) such that xx 1 . 

6о. Distributivity of multiplication with respect to the sum of scalar factors 

   xxx    7 о.   yxyx   . 

8о. Distributivity of multiplication with respect to the product of scalar factors 

     RMxxx   ,,, . 
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 Consequences of the axioms: 

1) The difference yx   of two elements is called the element Mz  , such that 

z+y=x . It is easy to see that: 

 yxyx  . 

Indeed, one can write that 

              xyyxyyyxyyxy  

=   xxxyy  0 . 

2) The uniqueness of the zero element. 

Let’s exist two zero elements: 10  and 20 . Then by definition we have: 

Mxxx  ,01  

Mxxx  ,02  

Put in the 1-st equation 20x  and in the second equation 10x . Then we get: 

21
121

212
00

000

000









. 

3) The uniqueness of the opposite element. 

Let for some element Mx   exist two opposite elements My  and Mz  . 

Then, 

zy
xz

xy

zx

yx



















0

0

0

0
. 

4) The zero element of the space  is equal to the product of any element  

by a number «0» that is 00  x  

  xxxx  00000  

Let us add the opposite element « x 0 » to the left and right parts. Then we 

have: 

000000  xxx . 

5) For any number  TR  the product 00  . 

Mx 
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Indeed,  000   . We can add again the opposite element « 0 » to the 

left and right part. Then: 

 00000    

00000   . 

6) If the product 0x , then or 0=α , or 0x . 

Indeed, let we have 0 , then   00
111

1 
















xxxx    

0x . 

7) x , the product    x1  is the opposite element to x , i.e.   xx 1 . 

Indeed,      001111  xxxx . 

 

Some examples of linear spaces and presented below as follows:  

Example 2.1. The set of all free vectors in three-dimensional space. The 

operations of addition and multiplication by a scalar have been defined earlier in 

the course of vector algebra. That is, the addition operation is defined by the 

parallelogram rule, and multiplication by a scalar  is defined as the increase 

(decrease) of the vector length in  λ  times. In this case, if 0>λ , the direction of 

the vector is preserved, and if 0<λ  it changes to the opposite. 

Similar sets of vectors on the plane 
2

R  and on the straight line 1R  are 

also linear spaces. 

Often the elements of linear spaces are called vectors, and the linear 

spaces themselves as vector spaces. 

Example 2.2. Suppose that vectors in 3R  are given by the coordinates: 

 321 x,x,x=x ,  321 y,y,y=y . Define the addition operation as 

 332211 y+x,y+x,y+x=y+x , and the multiplication operation by a scalar 

as  321 -λx,λx,λx=xλ . 
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It is easy to verify that addition and scalar multiplication operations are 

closed operations in 3R . Indeed, we can write down 

 
 

 

  3

321

3

332211

321

321

,,

,,

,,

,,

Rxxxx

Ryxyxyxzyx

yyyy

xxxx















 

Let us check axioms 1-8. 

1.     x+y=x+y,x+y,x+y=y+x,y+x,y+x=y+x 332211332211  

2.     z+y+x=z+y+x  – obviously. 

3.  0,0,00   

4.  321 ,, xxxx   

5.   xxxxx  321 ,,1   

This axiom does not hold, so other axioms can be left unchecked. Thus, 

this space does not belong to a linear space. 

Example 2.3. Is n-dimensional space nR a linear space? The addition and 

scalar multiplication operations are defined as: 

 

 

 

 n

nn

n

n

xxxx

yxyxyxyx

yyyy

xxxx

,...,,

,...,,

,...,,

,...,,

21

2211

21

21

 










 

Solution. The mentioned operations are closed in nR . Let's check axioms: 

It is obviously,  

xyyxo .1  

    zyxzyxo .2  

 0,...,0,00.3 o  

 n
o xxxx  ,...,,.4 21  

xxo 1.5  

          0,...,0,,...,,,...,,.6 12121 xxxxxxxx nn
o   

  xxxx   0,...,0,1  
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So the given space is not a linear space. 

Example 2.4. Consider a set M of real functions that depend on one real 

variable. These functions are continuous and positive values  bat , . We 

introduce operations of addition and multiplication by a number as: 

       tytxtytx   

     txtx   

Obviously, these operations are closed in the set M. Let us check the 

axioms: 

        xytxtytytxyxo .1  

        zyxzyxzyxzyxo .2  

  1000,0.3  xxxxo  

  1tf ,  bat , . 

yxo .4 ; 
x

yyxyx
1

10  . 

xxo 1.5 ; xxx  11  

  xxxxxxxxo    .6  

      yxyxyxyxyxo  
.7  

   
 

   xx
xx

xxxo




















.8
 

That is, it is a linear space. 

 

Example 2.5. A set   tPn  of all algebraic polynomials of degree not 

exceeding the natural number n is a linear space.  

However, the set of all only n -th degree polynomials is not a linear space, 

since the sum of two such polynomials may have a smaller degree. 
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 2.2. Basis and Dimension of Linear Space 

Let a linear space M be given on the set of real numbers R. 

Definition 1. Elements of space M are called linearly dependent if there 

exist such arbitrary constants ...γ,β,α,  that among of them at least one is nonzero 

but a linear combination of elements with these constants is zero element of the 

space M, i.e. 

0...  wzyx  ,    .
2 2 2 2... 0         

 

Definition 2. Elements ...x, y,z, ,w  of space M are called linearly 

independent if their trivial linear combination is possible if and only if all 

arbitrary constants ...γ,β,α,  are equal to zero, that is 0... =δ=γ=β=α . 

Otherwise, these elements are called linearly dependent. 

 

Theorem. For the elements w,,z,y,x ...  of the linear space M to be linearly 

dependent it is necessary and sufficient that one of these elements was a linear 

combination of the others. 

Necessity. Let the elements w,,z,y,x ...  be linearly dependent. This means 

that 0...  wzyx  , where at least one of the coefficients, for 

example, 0≠α . However, then, we can write wzyx











 ... .  So, 

this element is a linear combination of the others.  

Sufficiency. Let one of the elements, for example, x , be a linear 

combination of the others, i.e. wzyx k  ...21 ,   

0...1 21  wzyx k . So, we have the situation when not all the 

coefficient are equal to zero, indeed the first coefficient  is 1, i.e. 0"1"  .  

 

Two elementary statements are true: 
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1. If among the elements w,,z,y,x ...  is a zero element, then these elements 

are linearly dependent. 

2. If some elements of the set are linearly dependent, then all elements of 

this set are linearly dependent. 

 

 Example 2.6. Examine the linear dependence or linear independence of 

the set of matrices: 













32

01
1A , 







 


52

21
2A , 












24

12
3A  

 Solution: Let’s suppose that OAAA  332211  , where O is a null 

matrix the same order as the matrices A. Then, 




























 










 00

00

24

12

52

21

32

01
321    























00

00

253422

22

321321

32321




 

Hence, the system of equations with respect to unknown coefficients occurs 





















0253

0422

02

02

321

321

32

321









 

Find the rank of the system matrix 



















































































000

000

120

211

~4~

480

000

120

211

~
3

2
~

253

422

120

211

244

144

133
rrr

rrr

rrr
 

We have 2 non-zero leading elements, i.e. the rank of matrix is 2, which is less 

than the number of unknown coefficients. Therefore, a non-zero solution exists, 

so the matrices form the linear dependent set.  
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 Example 2.7. Examine the linear dependence or linear independence of 

the set of functions: 

xxf1 )( , xxf2 sin)(  , xxf3 cos)(   

 Solution: Let’s suppose that 0)()()( 332211  xfxfxf  , then, 

0cossin 321  xxx   

If 0x  we have that 03  , then, 0sin21  xx  .  

The differentiation of this equation gets the equality: 0cos21  x . 

Substituting 0x  and 
2


x  in the equality leads to the system of equations: 









0

0

1

21




  01   and 02   

Thereby, the linear combination of the function is equal to zero provided that 

0321   , i.e. the functions form a linear independent set.  

 

Definition. A set of linearly independent elements ne,,e,e ...21  of the space 

M is called the basis of this space, and any element of this space can be 

represented as a linear combination of basic elements, i.e. it holds the following 

equality: 

nn

n

i
ii exexexexx  



...2211
1

    (2.1) 

Equation (2.1) is called the decomposition of the element x  with respect 

to the basis  
ni=ie

1,
, and the coefficients ix , n=i 1,  are called the coordinates 

of the element x  in this base  
n=iie

1,
. So any element x  may be determined by 

the set of numbers nx,,x,x ...21 . 
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 Example 2.8. Prove that the matrix 













43

21
A  in the natural basis 1E , 

2E , 3E , 4E  of the linear space M(22,R) has coordinates (1,-2,-3,4)  

 Solution: Let’s compose the linear combination 

44332211 EEEEA   . Then, 

















































10

00

01

00

00

10

00

01

43

21
4321   

4321 4321
10

00
4

01

00
3

00

10
2

00

01
EEEE 



































 

 

 Example 2.9. Find coordinates of the vector given by the function 

][223 32 xRxx   

(a) in the natural basis of the linear space ][3 xR  

(b) in the basis of functions 2x , 1x , 1 

 Solution: The natural basis is formed by the set of functions: 11 e , xe 2

, 2

3 xe  . Then, the decomposition of the function is as follows: 

321

22 3223212223 eeexxxx  , 

that is the coordinates are (2, -2,3). 

Decompose the function in the basis of functions 2

1 xb  , 12  xb , b3 = 1: 

321

22 02310)1(23223 bbbxxxx  , 

that is the coordinates are (3, -2,0). 

 

Definition. A linear space M is called n-dimensional if it has n linearly 

independent elements, and any  1+n  elements are linearly dependent.  

In this case, the number "n" is called a dimension of space and is denoted as  

dim M= n. 
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 Further, we will assume that n < ∞. Such a vector space is called finite-

dimensional. 

 

Theorem. If V is a linear space of dimension n, then any n linearly 

independent elements ne,,e,e ...21  form its basis. 

Proof. Let  
n=iie

1,
 be any system of n linearly independent vectors of 

space R, and x  is any element of R. According to the definition of n-

dimensional space, the system of  1+n  vectors is linearly dependent. So 

0
1

0 


n

i
iiex        (2.2) 

Note that 0≠0α , because otherwise the vectors  ie  will be linearly 

dependent. Then it follows from (2.2) that element   i
i ex
0


 is a linear 

combination of  
n=iie

1,
. So, system of the elements  ie  generates the basis.  

 

Theorem. If a linear space V has a basis consisting of n elements, then 

dim V = n. 

Proof. Let  
n=iie

1,
 be the basis of the space R. Choose any  1+n  

elements of this space 121 ... +nn g,g,,g,g  and decompose these elements in the 

basis  
n=iie

1,
. 

nneaeaeag 12121111 ...  

nneaeaeag 22221212 ...  

… 

nnnnnn eaeaeag  ...2211  

nnnnnn eaeaeag ,122,111,11 ...   ,  

where Raij  . Obviously, the linear relationship  
11, +n=iig  is equivalent to the 
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linear dependence of the rows of the matrix: 























 nnnn

n

n

aaa

aaa

aaa

A

,12,11,1

22221

11211

...

............

...

...

. 

But rows of the matrix A are obviously dependent because its 

1+n<nARg ≤ . Therefore, at least one of the rows of this matrix will be a linear 

combination of the others (by the base minor theorem). Hence, the system of 

elements  
11, +n=iig  is linearly dependent. The theorem is proved.  

 

 2.3. The Transformation of Coordinates with a Change of Basis 

Consider a linear space nR  and set of vectors na,,a,a ...21  in this space. 

To determine whether the system is the basis of this space, it is necessary to 

construct their linear combination and equate it to the zero element, that is 

0...2211  nn aaa  ,    (2.3) 

1 , 2 , …, n  are arbitrary constants. 

This equality is equivalent to a system of linear algebraic equations 

(SLAE). Indeed, if all vectors  ia  are given by its coordinates 

 

 

 ,...

...

,...

,...

21

222212

112111

nnnnn

n

n

aaaa

aaaa

aaaa







 

then, the equality (2.3) can be written in expanded form as: 



















0...

...

0...

0...

2211

2222121

1212111

nnnnn

nn

nn

aaa

aaa

aaa






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The matrix A of this system is composed of coordinate vectors  ia , 

which are the columns of this matrix A, i.e.  0A . 

The system is homogeneous. The rank of the matrix ARg  coincides with 

number of linearly independent vectors. 

 

Example 2.10. The system of vectors  2,1,5,3,11 a , 

 3,4,3,1,22 a ,  4,7,1,1,53 a ,  3,1,9,7,74 a  are given in space 5R . 

Determine the maximum number of linearly independent vectors. 

Solution. Let's form a vector equation similar to (2.3) as follows: 

044332211  aaaa      (2.4) 

This equation is equivalent to the next system of equations: 























03432

074

0935

073

0752

4321

4321

4321

4321

4321











or 0A , where 























4

3

2

1









 . 

Let us determine the rank of the matrix of this system: 

































3432

1741

9135

7113

7521

A  

Note that the columns of the matrix A coincide with the coordinates of the 

vectors 54321 a,a,a,a,a . So, further, we will study the linear independence of 

the system of vectors (i.e. finding the rank of the system of vectors) we need to 

compose the matrix A, the columns of which coincide with coordinates of the 

vectors. 

 Let's perform elementary transformations over rows of the matrix A to 
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convert it into the row echelon form, i.e. 

 
 

  ~

2/

13/

7/

~

171470

81260

2626130

141470

7521

~

2

5

3

44

33

22

551

414

313

221

rr

rr

rr

rrr

rrr

rrr

rrr









































 

 

~3/

2/

~

3000

2000

2210

3101

~

2

3

2

~

171470

4630

2210

2210

7521

~

141

44

33

525

424

121

rrr

rr

rr

rrr

rrr

rrr
























































 

3

1000

2210

0101

~ 
















ARg   

Therefore, only 3 vectors are linearly independent, for example, 421 a,a,a

. Now we can write down the corresponding homogeneous system of linear 

equations with respect to unknown coefficients: 















0

22

4

432

31







   















0

2

4

32

31







 

Thus, the linear combination of the given four vectors takes the form: 

  02 332313  aaa  . 

or  

02 321  aaa    213 2aaa 
 

 

Example 2.11. Prove that vectors  2;3;11 g ,  1;1;42 g   1;4;23 g  

form a basis and decompose the vector  3;2;3 x  in this basis. 
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Solution. Suppose that we have proved that  
1,3=iig  is the basis. Then 

   3;2;3;; 321  xxxx  can be represented by a vector equality: 

332211 gα+gα+gα=x      (2.5) 

The equation (2.5) corresponds to the SLAE, which can be written in 

matrix form as follows 

x=xG g ,
      (2.6) 

where G is a matrix whose columns coincide with the coordinates of vectors 

321 g,g,g ,  and x  is a matrix-column, and the vector gx  is a vector of unknown 

coefficients i  (i = 1,2,3) in (2.5), i.e.  



















3

2

1







gx . 

Let’s find the solution of the system of equations (2.6) by using the 

Jordan-Gaussian method: 

 
~

1

2
~

3570

710130

3241

~
2

3
~

3112

2413

3241

32

223

313

221

rr

rrr

rrr

rrr














































 





















































2100

1010

3241

~

10500

1010

3241

~7~

3570

1010

3241

~ 332 rrr  

As the rank of the matrix is 3Rg =G , the vectors  
1,3=iig  form the basis. 

Therefore, following the Gauss method, we can find the unknown coefficients in 

the form: 

23  ; 12  ; 3443243 321   ; 31  . 

Thereby, the given vector x  can be decomposed in the basis  
1,3=iig  as 

follows: 
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321 23 gggx  . 

That is, if the basis is given by the system of vectors  321 g;g;g=G , then the 

vector x  in this basis  321g α;α;α=x  has coordinates  213 ;;=xg . 

 

In general case, if the basis is given by vectors ng,,g,g ...21 , and G is a 

non-singular square matrix constructed with columns of coordinates of this 

vectors then this matrix is called a matrix of the corresponding basis. Hence, 

any vector x  in this basis can be defined as: 

GxG=x       (2.7) 

If another new basis H is specified in this space such that nh,,h,h ...21  are linear 

independent vectors, and H is a matrix of the corresponding basis H, then, 

similarly to (2.7), the same vector x  can be represented in the new basis in the 

form: 

HxH=x       (2.8) 

For the same vector, expressions (2.7) and (2.8) are equal. Then, we can write 

down the transition of the vector coordinates from the “old” basis G to the 

“new” basis H as follows: 

GHGH xGHxxGxH  1    (2.9) 

The last formula determines the relationship between the coordinates of 

the vector x  in the "old" and "new" bases. 

 

Example 2.12. Two basis  21 g;g=G  and  21 h;h=H  are given. 

Coordinates of the basis vectors are  4;31 g ,  2;12 g , and  1;11 h , 

 4;52 h ,  respectively. Find the coordinates of the vector x  in the new basis H 

(i.e. Hx ), if its coordinates in the basis G are  2;3 Gx . 

Solution. In accordance with the formula (2.9), we have to find:  
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GH xGHx  1  

Construct the matrices H and G, respectively, as follows: 











41

51
H ; and  







 


24

13
G

 

Then, find the inverse matrix 
1H : 































11

54

11

54

1

11H

 

By multiplying the matrices, we get 



















 














31

148

24

13

11

541GH

 

Finally, the product of the three multiples gives the required coordinates of the 

vector in the new basis H: 





























 

3

4

2

3

31

148
1

GH xGHx . 

 

Sometimes the relation linking an “old” basis  n21 gg;g=G ;...;  and a “new” 

basis  n21 hh;h=H ;...;  are known instead of their basis vectors  ig  and  ih , 

that is an appropriate system of linear equations is given  



















nnnnnn

nn

nn

hththtg

hththtg

hththtg

...

...

...

...

2211

22221122

12211111

    (2.10) 

In the matrix form, the system (2.10) can be rewritten as: 

THG        (2.11) 

where  
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





















nnnn

n

n

ttt

ttt

ttt

T

...

............

...

...

21

22221

11211

      (2.12) 

 Definition. The matrix T is called a transition matrix from the basis H 

(said to be a “new” basis) to the basis G (said to be an “old” basis). 

 One can notice the following: 

1. The above transition matrix T may also be viewed as the matrix whose 

columns are, respectively, the coordinate column vectors of the “old” 

basis vectors  ig  relative to the “new” basis H; namely,  

      
HnHH

gggT ...,,, 21  

2. Analogously, there is a transition matrix C from the “old” basis G to the 

“new” basis H. Similarly, C may be viewed as the matrix whose columns 

are, respectively, the coordinate column vectors of the “new” basis vectors 

 ih  relative to the “old” basis G, i.e.       
GnGG

hhhC ...,,, 21  

3. Because the vectors n21 gg;g ;...;  in the “new” basis H are linearly 

independent, the matrix T is invertible. Similarly, C is invertible due to the 

same reason for the vectors n21 hh;h ;...; . In fact, we have that if T and C 

are the above transition matrices, then 
1TC . 

Taking into account the relation (2.11) we can rewrite the relation (2.9) as 

follows:  

  






G

marrixIdentity

H xTHHx 
1

GH xTx   (2.13) 

 Thus, the coordinates of the vector in the "new" basis H via its coordinates 

in the "old" basis G are computed using the transition matrix T from the “new” 

basis to the “old” basis.  

 Example 2.13. The relationship between the two bases G and H in 3R  

space is given by the system: 
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













.267

,352

,34

3213

3212

3211

hhhg

hhhg

hhhg

 

Find the coordinates of the vector x  in the basis H, if its coordinates in the basis 

G are known as  1;2;3 Gx . 

Solution. Since GH xTx  , 

where 




















231

653

724

T , we can write  



























































5

5

9

1

2

3

231

653

724

Hx  

So,  5;5;9Hx . 

 

 Let us consider other types of linear spaces. 

Let K be a space of polynomials  tx=x  of degree not higher than 4: 

 deg 4x t  , i.e. K is a space of polynomials of the form 

  4
4

3
3

2
21 tC+tC+tC+tC+C=tx , where   RiC i  4,1, , (i.e. iC  are the real 

numbers). Assume that the operations of addition and scalar multiplication are 

determined in the way usual for the linear space. Then these functions can be 

considered as vectors of the form:  43210 ,,,, CCCCCx  , i.e. they are elements 

of 
5R  space, where the role of the basis plays the functions 11 g ; tg 2 ; 

2
3 tg  ; 

3
4 tg  ; and 4

5 tg  .  

However, as a basis we can also take linearly independent polynomials of 

the other forms, e.g. 11 h ;  ath 2 ;  23 ath  ;  34 ath  ; 

 45 ath  , where a is any real constant. 
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To find the coordinates of the vector x  in the basis H, we can use Taylor's 

formula in the form of the fourth-order expansion: 

   
 

 
 

 
 

 
 

 43
///

2
///

!4!3!2!1
at

ax
at

ax
at

ax
at

ax
axtx

IV

 . 

 

Example 2.14 A polynomial 
432 4356 ttttx   is given. Find the 

decomposition of this polynomial in the basis 11 g ; 22  tg ;  23 2 tg ; 

 34 2 tg ;  45 2 tg . 

Solution.  We present this polynomial in the form: 

         45
3

4
2

321 2222  tatatataatx . 

To find the coefficients of this decomposition we use the Taylor’s  formula with 

known constant 2a . Then, we calculate the required values  

     1081648341062
642420




x  

  173816364516925 2

32 
tttttx  

  23044836248182 2

2 
ttttx  

  210192189618 2 
tttx  

  96tx IV  

According to Taylor's formula we obtain that: 

          
432

2
24

96
2

6

210
2

2

230
217376 tttttx

 

that is the coordinates of the vector in the new basis are  

 4;35;115;173;76  . 

 

 2.4. Subspaces 

Definition. A set of elements RL  is called a subspace of linear space R 

if it is closed with respect to linear operations: 
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10.  , ,x y L x y L       

20. Lx  and   ,R C x L       

It is easy to verify that the subspace L, which satisfies conditions 10 and 20, is 

also a linear space. 

Indeed, all the axioms except for the axioms 30 and 40 are true as they are 

true Rx .  

Regarding the axioms 30 and 40, they follow from the consequences of the 

axioms: 

0 ∙ 𝑥⃗  =  0 and −1 ∙ 𝑥⃗  =  − 𝑥⃗ 

Indeed using that Lx , we can choose 0=λ , then  x0 , L  if Lx  

and if 1 , then one can obtain that xx 1 , Lx  if Lx . That is L 

is a linear space. 

 

The simplest examples of subspaces are the following ones: 

1) Zero space, i.e. space that consists of only one 0 -th element. 

2) The whole space R  is also a subspace of itself. 

Both of these subspaces are called improper space 

3) Subset   tPn  of all algebraic polynomials of degree not exceeding 

Nn  is a subspace in linear space  ba,C  of all continuous functions  tx , on 

the segment  ba, ,. 

4) Any plane P, which passes through the origin, forms a subspace of three-

dimensional space 
3R . 

 Indeed, this plane can be considered as a plane formed by two vectors 1x  

and 2x , which come from the origin (straight line, if 21 || xx ). Obviously that 

1  and R2  vectors belong to the plane, i.e. Pxx  2211   as shown in 
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Fig. 2.1.  

 

 

 2.5. Linear Spanning Set (Span) 

Let’s consider a vector space V over the field K and a set of vectors 

mxxx ,...,, 21 , which belongs to this space V. If every vector in V can be 

expressed as a linear combination of mxxx ,...,, 21  then it could be said that this 

set of vectors mxxx ,...,, 21  form a linear spanning set of V. 

Definition. The set of all linear combinations mm xxx  ...2211  , 

where  m=iαi 1,  are arbitrary real (or complex) numbers in K is called a linear 

spanning set (or a span) of elements  
m=inx

1,  and is denoted as 

 mxxxL ,...,, 21  or  mxxxspan ,...,, 21 . 

For a span  mxxxL ,...,, 21  the axioms of linear subspaces 10 and 20 are 

valid. Thus, any span is a subspace of linear space. Sometimes the span is called 

a subspace, which is generated by the elements mxxx ,...,, 21 . 

 

Definition. The dimension of a span is equal to the maximum number of 

linearly independent elements among the elements mxxx ,...,, 21  forming the 

span  mxxxL ,...,, 21 . 

Definition. If a span   VxxxL m ,...,, 21  then we say that mxxx ,...,, 21  

spans V and we call V finite-dimensional. A vector space that is not finite-

0 Р 

1x  

2x  

4x  

 

Fig. 2.1 

3x  
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dimensional is called infinite-dimensional. 

 

Example 2.15. Consider a subspace which is generated by solutions of 

homogeneous SLAE with m equations and n unknowns. 

In matrix form, this system is written such as 0xA , where 























nnnn

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

. 

One can show that the set of solutions M of the homogeneous SLAE forms a 

subspace.  

 Indeed, if Mx 1 , i.e. 01 xA  and Mx 2 , i.e. 02 xA , then 

Mxx  21 , because   02121  xAxAxxA . Similarly, if Mx 1 , 

01 xA , then Mx  1 , R , because   011  xAxA  .  

To find the dimension of this subspace, we have to determine the number 

k of free variables in the system and the rank of the matrix ARg . Then, 

according to the Kronecker-Kapelly theorem, An=k=M Rg-dim . At the same 

time, the fundamental system of solutions is a basis of this subspace.  

 

Example 2.16. The subspace L is formed by vectors for which the 

following equations hold: 12 xx  , 35 2xx  , 24 xx  . Determine the 

dimension and basis of this subspace. 

Solution. To find the dimension and basis of the subspace, we write an 

appropriate system of homogeneous equations 















0

02

0

42

53

21

xx

xx

xx

, or, in the matrix form as 0xA  
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Solving this system of homogeneous equations with the Jordan-Gaussian 

method we can write: 









































 10200

01010

01001

~

01010

10200

00011

32

131
rr

rrr

A

















53

42

41

2 xx

xx

xx

Therefore, 3Rg =A ; and 23-5dim ==M . 

Since there are only two free variables, for example, 4x  and 5x . Then the 

fundamental system of solutions looks like: 

1x 2x 3x 4x 5x

1е
-1 1 0 1 0 

2е
0 0 -0.5 0 1 

That is, the following vectors can be chosen as basis: 

























0

1

0

1

1

1е , and 

























1

0

5.0

0

0

2е . 

Therefore, any vector x  (the system solution) can be presented in the form: 

















































1

0

5.0

0

0

0

1

0

1

1

212211 CCeCeCx . 

Example 2.17. Subspace 
5RL  is given by the SLAE:  















05977

04232

03523

5421

54321

54321

xxxx

xxxxx

xxxxx
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Find the dimension and basis of the subspace. 

Solution. Let's build a matrix of this system and determine its rank. 

~

59077

42132

59077

~

59077

42132

35213

121 2














































 rrr

A  

~

42132
7

5

7

9
011

~
42132

59077
~

12
1

1
27 rr

r
r



































 













































7

18

7

4
110

7

13

7

13
101

~

7

18

7

4
110

7

5

7

9
011

~ . 

2Rg A , as a result, the number k of free variables is equal to 325 k . If to 

choose 3x , 4x  and 5x  as free variables, then the variables 1x  and 2x  take the 

form: 

5432
7

18

7

4
xxxx   and 5431

7

13

7

13
xxxx  . 

To find the basis vectors (fundamental system of solutions) we give arbitrary 

values for the free variables 3x , 4x  and 5x  and get the corresponding values for 

1x  and 2x  as follows: 

 1x  2x  3x  4x  5x  

1е  1 -1 1 0 0 

2е  13 -4 0 7 0 

3е  -13 18 0 0 7 

Therefore, the vectors 321 ,, eee  form the basis, and any vector the given linear 

subspace (as a general solution of the homogeneous system) can be presented in 

the form: 
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











































































7

0

0

18

13

0

7

0

4

13

0

0

1

1

1

321332211 CCCeCeCeCx . 

 

Further, let’s consider an inverse problem, i.e. let the subspace be given as a 

span of vectors. We need to build a SLAE that defines this subspace. 

 

Example 2.18. A subspace 
4RL   is given as a span formed by the 

vectors  1:2;0;11 g ,  0:1;2;32 g ,  2;3;2;13 g . Write down a 

SLAE corresponding to this subspace.  

Solution. First, determine whether the vectors are linearly independent. 

For this purpose, we construct the matrix using the coordinates of the vectors 

written as rows of the matrix. Then, we convert the matrix into a row echelon 

form: 

~
3520

1201
~

3520

3520

1201

~

2321

0123

1201

23

13

12 




























































r

rr
rr

 



















2

3

2

5
10

1201
~  

Since the rank of the matrix is 2, one can say that among the three vectors 

forming a linear space, only two are linearly independent. That is, dim L=2.  

These two obtained vectors are  1,2,0,11 h , 









2

3
,

2

5
,1,02h , and they can 

be taken as a basis.  

 The general solution of the SLAE takes the form: 
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1

2

1 1 2 2 1 2

3

4

0

1 1

0 5

2 2

1 3

2

x

x
x C h C h C C

x

x

 
    
    
         
    
    

      
 

 























.
2

3

,
2

5
2

,

,

214

213

22

11

CCx

CCx

Cx

Cx

 

Excluding constants C1 and C2 from the resulting system, we have: 














.
2

3

,
2

5
2

214

213

xxx

xxx

 

Thus, we have the following system of equations: 













0
2

3

0
2

5
2

421

321

xxx

xxx
 or 









.0232

,0254

421

321

xxx

xxx
 

 

 2.6. The Sum and Intersection of Subspaces 

Definition. Let 1L  and 2L  be two subspaces of linear space K. The union 

(sum) of these subspaces 1L  and 2L  is called the set of all vectors (elements) of 

the form yx  , where 1Lx , 2Ly . The sum is denoted as 21 LL   or 21 LL 

, where  2121 and| LyLxyxLL  . 

Definition. Let 1L  and 2L  be two subspaces of linear space K. The 

intersection of these subspaces 1L  and 2L  is called the set of all vectors 

(elements) that belongs to 1L  and 2L  simultaneously. The intersection is 

denoted as 21 LL  , where  2121 and LvLvvLL  . 

 

Theorem 1. The intersection 21 LL   is a linear subspace. 
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Proof: Let 21 LLv  , then 1Lv  because 1L  is a linear subspace, 

similarly  212 LLvLv   .  

Let 21, LLyx  , then 1, Lyx   and 2, Lyx  , but then 1Lyx   (since 

1L  is linear space),  2Lyx 21 LLyx  .  

 

A similar theorem is valid for the sum of subspaces. 

Theorem 2. The sum 21 LL   of linear subspaces is a linear subspace. 

Proof. Let yxv  , where 1Lx , 2Ly , then yxv   , and 

1Lx , 2Ly .  

 

Theorem 3. The sum of the dimensions of subspaces 1L  and 2L  of a 

finite-dimensional linear space R is equal to the sum of the dimensions of the 

intersection of these subspaces and the dimension of the sum of these subspaces, 

i.e. 

   212121 dimdimdimdim LLLLLL   , 

or 

   212121 dimdimdimdim LLLLLL   

Proof. Let us denote intersection  of 1L  and 2L  as 21 LLL 0 . The sum 

of  1L  and 2L  let us denote by L ( 21 LLL  ). Suppose that 0L  is k-

dimensional space. Let us choose the basis in it: 

1e , 2e ,…, ke .     (2.14) 

Let a supplement basis (2.14) to the basis in subspace 1L  be as 

1e , 2e ,…, ke , 1g , 2g ,…, lg     (2.15) 

and to the base in subspace 2L  be as 

1e , 2e ,…, ke , 1f , 2f ,…, mf     (2.16) 
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Consider a set of elements: 

1g , 2g ,…, lg , 1e , 2e ,…, ke , 1f , 2f ,…, mf     (2.17) 

We can prove that the elements (2.17) are linearly independent. 

 Assume that some linear combination of elements (2.17) is a trivial: 

0......... 11112211  mmkkll ffeeggg  , (2.18) 

or 

mmkkll ffeeggg   ......... 11112211 . (2.19) 

The both left and right parts of the equation (2.19) belong to the intersection 0L  

of the subspaces 1L  and 2L  because the left part is an element of 1L , and the 

right part is an element of 2L . However, the right-hand side of (2.19) is a linear 

combination of elements (2.15), i.e. there are arbitrary numbers 1 , 2 ,…, k  

such that  

kkmm eefff   ...... 112211    (2.20) 

Due to the linear independence of the basic elements (2.16), the equality (2.20) 

is possible if and only if all the coefficients km λ,,λ,γ,γ,γ ...... 121  equal to zero. 

Using (2.19), we get that 

0...... 112211 =eβ++eβ+gα++gα+gα kkll    (2.21) 

Due to the linear independence of the basis vectors (2.17), the equality (2.21) is 

possible if and only if all the coefficients 0...... 121 =β,β,α,,α,α kl .  

 Thus, we found that the equality (2.19) is possible if and only if all the 

coefficients mkl γ,γ,β,β,α,,α ......... 111  are zero, which proves the linear 

independence of the elements (2.17). 

We have proven that any element x of the sum L is some linear 

combination of elements (2.17). Indeed, consider the element x


, which is 

represented as 



m

k
kk

k

j
jj

l

i
ii fegx

111




. The first two terms coincide 
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with the element 11 Lx  , and the last term is equal to 22 Lx  . Whence it 

follows that 2LLx 1 . That is mklLL1  )dim( 2 . Taking into account that 

kLL1 )dim( 2 , klL 1dim , kmL 2dim , we get the following 

expression:  

   212121 dimdimdimdim LLLLLL  . 

The theorem is proved.  

 

 We have already mentioned that the intersection of two subspaces is all 

the vectors shared by both. If there are no vectors shared by both subspaces L1 

and L2, meaning that 


 21 LL , the sum 21 LL   takes on a special name. 

 

 Definition. The space L is a direct sum of 1L  and 2L  and is denoted as 

21 LL  , if 


 21 LL . That is an element Lx  can only be represented in the 

form 21 xxx


 , where 11 Lx  , 22 Lx 


. 

In this case, theorem 3 leads to the formula:  

  2121 dimdimdim LLLL   
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Chapter 3. LINEAR OPERATORS 

 3.1. Concept of the Linear Operator 

 Consider the linear space K over the field of real numbers R. 

 Definition. Let D be some set of elements x


 of linear space K, i.e. KD  . 

If to each element x


 in set D there corresponds a certain element of space K 

( KMy   ) in accordance with a rule A, then we can say that the operator A 

is specified, and it maps the elements from set D into the elements of set M.  

 The last statement can be written in the form yx A .  

In a particular case, if K is a set of real numbers, then we deal with a real-value 

function  xf=y . That is, the concept of the linear operator A is a 

generalization of a function definition as drawn in Figure: 

 

Fig. 3.1. 

The set of all elements Kx , to which the operator A is applied, is called 

the definition domain of the operator and is denoted as DA. In particular, DA can 

coincide with the whole space K . 

The set of all elements My  is called the range of values of the 

operator A and is denoted as A . 

An operator A is said to be given if: 

1. a definition domain DA is specified 

2. a rule (law) according to which ADx  there corresponds a certain 
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element (vector) xy A  is known 

Two operators A and B are equal if: 

1. BA D=D  

2. xx BA  , Dx  

Example 3.1. Let K be some space, and let the operator A be defined such 

that xA , Kx . Such operator is called a cancellation or null operator. 

Example 3.2. Let K be an arbitrary space. The operator specified as 

xx A , Kx , is called identity operator. 

Example 3.3. If the operator A is defined as xkx A , Kx , Rk , then 

it is called the similarity operator.  

That is, the application of operator A to any element of space stretches 

(compresses) this vector k times. 

Example 3.4. Let  baCK ,  and  txx  ,  txx A . In this case, we will 

write that 
dt

d
A , and A is called the differentiation operator. 

Next, we consider operators that are given in the whole linear space L, and 

the range of values of the operator is LA  . 

 

Definition. An operator A given in a linear space is a linear operator if it 

satisfies the following conditions: 

1.   2121 xxxx AAA  , Lxx  21,  

2.   xx AA   , Lx  

For example, we show that the differentiation operator is linear. Indeed, if

 txx A , then we can write: 

1)     2121212121 xxx
dt

d
x

dt

d
xxxxxx AAA 


  
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2)     xx
dt

d
xxx AA 


   

 

 3.2. Matrix Representation of the Linear Operator 

Let a linear space L have dimension n, i.e. nL dim . We choose some 

basis ne,,e,e ...21  in L. Then Lx  we have: 





n

k
kk exx

1

      (3.1) 

Suppose that a linear operator A is given in this space. We apply this 

operator to both the sides of (3.1): 

k

n

k
kk

n

k
k exexx AAA 













 

 11

     (3.2) 

Thus, it follows from (3.2) that to specify the operator A it is enough to 

specify its value in the basis of vectors, i.e. neee AAA ,...,, 21 . 

Since 
niie

,1
A  are vectors in space L, they can be uniquely represented 

in the form of decomposition in the basis of this space, i.e.  

nnnnnn

nn

nn

eaeaeae

eaeaeae

eaeaeae







...

.............................................

...

...

2211

22221122

12211111

A

A

A

    (3.3) 

The relations (3.3) can be rewritten in the compact form as  

nkeae i

n

k
ikk ,1,

1

 


A ,    (3.4) 

where ika  are the i-th coordinate of the k-the vector keA  in the base 
nkke

,1 . 

Substituting (3.4) into (3.2), we obtain: 
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    







































 n

=i

n

=i

n

=k
ik

n

=k
iki

n

=k

n

=k
k exa=eax=eax=x

1 1 1
ik

1
ik

1 1
ikA . (3.5) 

On the other hand, the vector xA , which is a result of the action of the 

operator applied to, has coordinates n21 y...,,y,y , in the base 
nkke

,1   i.e. 





n

i
ii eyx

1

A .     (3.6) 

Comparing (3.5) and (3.6), we obtain: 

i

n

=i

n

=k
k

n

=i
ii exa=ey   














1 1
ik

1

.    (3.7) 

Due to the uniqueness of the decomposition, it follows from (3.7): 

n=i,xa=y k

n

=k
i 1,∀

1
ik .     (3.8) 

That is  



















nnnnnn

nn

nn

xaxaxay

xaxaxay

xaxaxay

...

..........................................

...

...

2211

22221212

12121111

    (3.9) 

The matrix of the system (3.9) is as follows: 























nnnn

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

     (3.10) 

Matrix (3.10) following from (3.9) is called a matrix of the linear 

operator A in the basis 
nkke

,1 . 

If matrix (3.10) is known, then, using formulas (3.3), we can find the 

vectors  ieA  and, as a result, we can find the vector xA  by formula (3.2). 

That is, assigning the operator matrix is equivalent to assigning the 
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operator itself. Conversely, by knowing the operator A and applying it to the 

basis vectors  ie , we can obtain the matrix of the operator A using the formula 

(3.3). 

Conclusion. If a specific basis is given in a linear space, then, any matrix of the 

n-th order corresponds to a linear operator in this space and vice versa each 

linear operator in a linear space can be represented by a certain square matrix. 

The system of equations (3.9) means that if 
niix

,1  and 
niiy

,1  are 

coordinates of the vectors x  and xA  in the basis, respectively, then, the 

coordinates of the second vector can be obtained by using a linear 

transformation (LT) with the matrix, which represents the matrix of the linear 

operator A in this basis. 

That is, the application of a linear operator to a vector implies the 

application of a linear transformation to its coordinates.  

In this respect, the concepts of linear transformation and linear operator 

are equivalent. 

Example 3.5. Let 0A . Find the matrix of this operator. Since  xA , 

we have 

.0...00

.............................................

,0...00

,0...00

21

212

211

nn

n

n

eeee

eeee

eeee







A

A

A

 

Thus, the matrix of the null operator is a zero-matrix: 























0...00

............

0...00

0...00

A . 
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 Example 3.6. Let Ε=A , i.e x=xA : 

,1...00

.............................................

,0...10

,0...01

21

2122

2111

nnn

n

n

eeeee

eeeee

eeeee







A

A

A

 

that is, the operator matrix has a form: 

IA 























1...00

............

0...10

0...01

. 

Thus, the matrix of the identical operator is an identity matrix. 

Example 3.7. Let A be the rotation operator in the plane 21οxx , which 

rotates an element by an angle . Find the matrix of this operator in the natural 

basis  ji,  (Fig. 3.2). 

Solution. 

jiABOAii   sincos' A   

jiCDOCjj   cossin' A  

Therefore, the rotation operator has a matrix in the 

form: 






 






cossin

sincos
A . 

Example 3.8. The operator A is given in space 
3Ε . Geometric vectors are 

determined by the formula   xxax 3, A . Prove the linearity of the operator 

and construct the matrix of the operator in the natural basis kji ,, . 

Solution. 

1. Let us  prove the linearity of this operator. Let yx,  be arbitrary 

elements of space 
3Ε , then  

O

h 
C A i

 

j  

A i  
B D 

φ 

φ 
A j  

Fig. 3.2 
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          yxyyaxxayxyxayx AAA  3,3,3,  

        xxxaxxax AA   3,3,  

That is, the given operator is a linear operator.  

2. Choose as a vector a  the following vector:  2,2,1 a . 

    2;2;332;2;03

001

2213,  ii

kji

iiaiA , 

   1;3;2323

010

2213,  kjij

kji

jjajA , 

   3;1;2323

100

2213,  kjik

kji

kkakA . 

Then the matrix of the operator A has the following form: 

























312

132

223

A . 

Example 3.9. Find the matrix of the operator in the natural basis that 

corresponds to the mirror reflection of the point С(x1, y1,z1) with respect to the 

plane 02  zyx  (Fig. 3.3). 

Solution. From the equation of a given plane 02  zyx , we obtain the 

normal vector  1,1,2 n . 

The equation of a straight line passing through the point C and normal to 

the plane is t
zzyyxx












112

111
  

 In the parametric form, these equations are rewritten as: 
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













1

1

12

ztz

yty

xtx

 

The point A of intersection of the plane and the 

straight line can be found as follows: 

024 111  ztytxt  

111 26 zxyt   

 111 2
6

1
zxyt   

  1111111
3

1

3

1

3

1
2

3

1
zyxxzxyxA   

  1111111
6

1

6

5

3

1
2

6

1
zyxyzxyyA   

  1111111
6

5

6

1

3

1
2

6

1
zyxzzxyz A    

Let us find a point B symmetric to point A with respect to the given plane, 

knowing that A is the middle of the СВ (Fig. 3.2): 

;
2

BC
A

xx
x


 11111111

3

2

3

2

3

1

3

2

3

2

3

2
2 zyxzyxxxxx AB   

11111111
3

1

3

2

3

2

3

1

3

5

3

2
2 zyxyzyxyyy AB   

11111111
3

2

3

1

3

2

3

5

3

1

3

2
2 zyxzzyxzzz AB   

Therefore, 









 111111111

3

2

3

1

3

2
;

3

1

3

2

3

2
;

3

2

3

2

3

1
zyxzyxzyxyxA  

 111111111 22;22;22
3

1
zyxzyxzyx  . 

To find the matrix of this operator in natural basis  kji ,, , we find 

A 

B 

C 

x1, y1, z1 

Fig. 3.3 
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 2;2;1
3

1
i


A ,  1;2;2

3

1
jA ,  2;1;2

3

1
kA . Then the matrix of the 

operator has a form: 























212

122

221

3

1
A . 

 

Example 3.10. Check the linearity and compose the matrix of the 

differential operator A given in the space of polynomials  tP . The degree of 

polynomials is   2≤tP , and the basis is formed by a set of functions: 

   21,1,1  tt . The operator is defined in the form:      tPtPttP 32 A . 

Solution. The polynomial is not higher than the second degree as a result 

it has a general form   2
210 ta+ta+a=tP .  

First, we prove the linearity of this operator. 

Let     LtP,tP ∈21 , then: 

a)        21
//

2
2//

1
2

21
//

21
2

21 333 PPPtPtPPPPtPPA

 

   
 

212
//

2
2

1
//

1
2

21

33 PPtPPttPPt

tPtP

AA

AA


  

b)                tPtPtPttPtPttP AA   33 //2//2
 

Indeed, the operator is linear. 

 To obtain the matrix A of the operator in the basis    21,1,1  tt , we 

apply this operator to each basis vector: 

   0;0;33301 2  tA  

   0;3;03301 2  tttA  
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     
 

  



2

1

2222
13241221321

2

ttttttt

t

A  

     5;4;221415
2

 tt . 

Therefore, the operator matrix has a form: 



















500

430

203

A . 

Example 3.11. Construct a matrix of an integral operator acting in the 

space L, given by a set of the functions: tt sin,cos1, . Check its linearity if the 

operator is given as  

     duuxuttx  

2

0

4sin



A  

Herein u is an integration variable. 

Solution. Let’s prove the linearity of the operator. 

a)                  
2

0

2

0

4sin4sin



duuxutduuyuxuttytxA

       tytxduuyut AA   4sin

2

0



 

b)         txduuxuttx AA   

 2

0

4sin  

To find the operator matrix, we apply operator to the basis vectors 

tt sin,cos1, . 

        0;0;00coscos
4

1
4cos

4

1
4sin1

0

2
2

0

  ttutduut




A . 

          duututuduutt

2

0

2

0

3sin5sin
2

1
cos4sincos



A  
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    





















 ttutut cos

2

1

2

5
cos

5

1

2

1
3cos

3

1
5cos

5

1

2

1

0

2




 
































 ttttttt sin

15

2
cos

2

1
sin

3

1
sin

5

1
cos

6

5

2

1
cos

3

1

2

3
cos

3

1
  

.
15

1
;

2

1
;0









  

          duuduutt

2

0

2

0

coscos
2

1
sin4sinsin



A

         







 

0

2
2

0

3sin
3

1
5sin

5

1

2

1
3cos5cos

2

1




ututduutut



























 tttttt cos

3

2
sin

5

1
cos

5

1

2

1
cos

3

2
sin

5

1

2
sin

5

1

2

1 
 



















10

1
;

30

7
;0sin

5

1
cos

15

7

2

1
tt . 

Thus, the matrix of the operator has a form: 



























10

1

15

1
0

30

7

2

1
0

000

A . 

Example 3.12. Verify that the function f is a linear operator in a linear 

space 𝑅2, if for any   2
21, Rxxx  , the function is given by relation 

   2112 3, xxxxxf  . 

Solution. 

a) Let’s take two different elements of the space  21, xxx   and 

  2
21, Ryyy  . Then 
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       2211 , yxyxfyxf  

   )()(3),()( 22111122 yxyxyxyx  

  22111122 33, yxyxyxyx  ; 

        21122112 3,3, yyyyxxxxyfxf  

  21211212 33, yyxxyyxx  , 

so, we have that      yfxfyxf  . 

Further,       211221 3,, xxxxxxfxf   ,  

      21122112 3,3, xxxxxxxxxf   , 

so, 

    xfxf   . 

Thus, f is a linear operator in the linear space 𝑅2. 

 

Example 3.13. The linear operator A has a matrix in the natural basis of 

the linear space of polynomials  tP , which are not higher than the first order: 











13

42
A ,   3 ttg . Find the operator  tgA . 

Solution. The natural basis of the linear space of  polynomials  tP  not 

higher than the first order is presented by the functions (1, t). The vector  tg  in 

this basis has coordinates x = ( –3, 1). Then 
































8

2

1

3

13

42
xAy . 

So,   ttg 82 A . 

 

 3.3. Matrix Transformation of a Linear Operator with Changing a 

Basis 

Suppose that a linear operator A is given in an n-dimensional linear space. 
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That is 

yx A . 

Let's choose the basis  
njjg

,1
, in which the operator A is represented by 

the matrix GA . This matrix is constructed as a result of applying the operator A 

to the basis vectors  ig  and their subsequent decompositions in the basis  ig , 

i.e. 

nnnnnn

nn

nn

gagagag

gagagag

gagagag







...

.............................................

...

...

2211

22221122

12211111

A

A

A

. 

Hence, we have 























nnnn

n

n

G

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

. 

Suppose that H is a new basis in this space. We need to find the matrix 

that represents this operator AH in the new basis H. 

Let’s establish the link between the “old” and “new” bases by the 

following relations: 

,...

.............................................

...

...

2211

22221122

12211111

nnnnnn

nn

nn

hththtg

hththtg

hththtg







 

 One can rewrite this system of equations in the matrix form as  

THG  , 

where  ngggG ,...,, 21  and  1 2 3, , , nH h h h h , and the transition matrix T 

from basis H to basis G is determined by 
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





















nnnn

n

n

ttt

ttt

ttt

T

...

............

...

...

21

22221

11211

. 

Taking into account that 

GGG xy A  , and GH yy T ,     (3.11) 

we get  

GGH xy TA .      (3.12) 

 The vector Gx  in the basis G is related to the vector Hx  in the basis H via 

the transition matrix as follows (2.13): 

GH xx T ,  HG xx 1 T     (3.13) 

 Substituting (3.13) into (3.12), we obtain the expression 

Hy 1TTAG Hx . 

Thereby, the matrix representing the operator with changing a basis (change-of-

basis matrix) from the “old” basis to the “new” basis is given by the formula: 

1 TTAA GH      (3.14) 

 

Example 3.14. Let the linear operator be given in two-dimensional space 

with the basis  2;11 g ,  3;22 g . The matrix of the operator in this basis is 













12

01
GA . Find the operator matrix in the natural basis. 

Solution. Following the task conditions, the matrix representing the 

operator in the basis 
1 2
,g g  is 












32

21
G .  

The operator matrix in the natural (new) basis of the vectors  0;1i , 
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 1;0j  takes the form: 









10

01
IH . 

The relationship between the old and new bases is defined as 

jig 21 


, jig 322 


, 

then, the transition matrix is 











32

21
T .  

 Find the inverse matrix 1T . Since the determinant of the matrix T is 

1det T , we have 






 


12

231T . 

Finally, in accordance with (3.14), the change-of-basis matrix takes the 

form:  



















 


















 





















1118

813

58

23

32

21

12

23

12

01

32

21
HA . 

 

Example 3.15. Find the matrix of the operator in the basis H, i.e. AH, if the 

operator matrix in the basis G is known as 













52

16
GA . The bases 

 21, ggG   and  21, hhH   are given by corresponding vectors  4;31 g , 

 2;12 g ,  1;11 h , and  4;52 h  

Solution. Let’s find the transition matrix T from basis G to basis H: 

 THG GHT 1 , 

where the matrices are given as 






 


24

13
G , 










41

51
H , respectively. 

Find the inverse matrix 1H :  

1det H , then, 


























11

54

11

541H , 

Thereby, 
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GHT 1 ,  






























 














31

148

2143

1042012

24

13

11

54
T  

Similarly, find the inverse matrix 1T : 

10det T , then, 

















 


81

143

10

1

81

143

10

11T   

Following the formula (3.14), the change-of-basis matrix is computed as  

1 TTAA GH ,   






















































6811

9219

31

148

10

1

81

143

52

16

31

148

10

1
HA  








 








 















567

1081

5

1

11214

2162

10

1

9220414

952736154152

10

1
. 

Similarity of the matrices 

 The matrices AG and HG ATTA 1
, where T is the non-singular matrix, 

represent the same operator in different bases H and G, respectively.  

 These matrices AG and 1 TATA GH  are called similar matrices or HA  is 

said to be obtained from GA  by a similarity transformation. 

One of the important properties of such matrices is the equality of their 

determinants. Indeed, 

   1detdet TATA GH  

 GGG AA
T

TTAT detdet
det

1
detdetdetdet 1   . 

Thus, the determinant of the operator matrix does not depend on the choice of 

the basis. 

Theorem. Two matrices represent the same linear operator if and only if 

the matrices are similar. 

That is, all the matrix representations of a linear operator A form an 

equivalence class of similar matrices. 
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 3.4. Eigenvectors and Eigenvalues of Linear Operators 

Suppose that a linear operator A is given in the linear space K over the 

field of real numbers R. 

 

Definition. A nonzero vector Kx


 is called an eigenvector of the 

operator A with corresponding eigenvalue  if the following equation holds: 

xx


A       (3.15) 

 

It should be noted that a zero vector cannot be an eigenvector, but zero can be an 

eigenvalue. Also, if zero is an eigenvalue for an operator A, then A is not a one-

to-one mapping. 

 

Example 3.16 Let 0=A . Then Kx : 

00


 x , i.e. 

xx

 00 , 

that is, the null operator has an "0" eigenvalue: 

= 0 Kx  

In this respect, further we will understand that an eigenvector is a nonzero 

vector 0


x , such that xx


A . 

 

 Theorem. A set of all eigenvectors corresponding to the same eigenvalue  

forms a subspace L of the space K. 

 Proof. Let L be the set of all eigenvectors of operator A with eigenvalue . 

Let’s consider two arbitrary vectors 1x  and 2x


. Then, there exist 11 xx


A  and 

22 xx


A . Summarizing them it gives  212121 xxxxxx


 AA . 

Since A is a linear operator, then  2121 xxxx


 AAA . So 

   2121 xxxx


 A , i.e.   Lxx  21


. 
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 Similarly, we can check the second axiom of subspace. Really, if Lx


, 

then xx


A  and R , we have: xx


 A , i.e.    xx


 A , therefore 

Lxα ∈ . The theorem is proved.  

 

 Definition. The subspace of all eigenvectors of operator A, which share the 

same eigenvalue  is called an eigenspace denoted as E(A) 

 

 Note. Every linear combination of the eigenvectors with the same 

eigenvalue λ is an eigenvector of the operator with this eigenvalue. In simple 

terms, any sum of eigenvectors is again an eigenvector if they share the same 

eigenvalue.  

 

 The number of times that any given root 𝜆𝑖 appears in the collection of 

eigenvalues is called its multiplicity. 

 Lemma. If A is a linear operator represented by an 𝑛𝑛 matrix A, then the 

dimension of the eigenspace dim(𝐸(𝑨)) ≤ 𝑚, where λ is an eigenvalue of A of 

multiplicity m.  

 

 Definition. The set of all eigenvalues of operator A is called а spectrum of 

the operator.  

 

 Eigenvectors and eigenvalues finding problem:  

 Suppose the basis  
n=iie

1,  in the space K is give, and the operator matrix 

in this basis is known  
n=ji,

a=A
1,ij . If the vector Kx


 has coordinates 

 T

n21 x,...,x,x=x  in this basis, the coordinates of the vector xA  can be found 

and written in the matrix form as follows:  

 XaXAx ij


A  
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In accordance with xx


A , we can write down the following matrix form of 

the eigenvalue-eigenvector equation: 

XIXA   ,     (3.16) 

where I is an identity matrix. 

Hence, the equation (3.16) may be written in the form: 

  0 XIA       (3.17) 

or 

0
...

1...00

............

0...10

0...01

...

............

...

...

2

1

21

22221

11211

















































































nnnnn

n

n

x

x

x

aaa

aaa

aaa

  

Then, we have 

0
...

...

............

...

...

2

1

21

22221

11211















































nnnnn

n

n

x

x

x

aaa

aaa

aaa







.   (3.18) 

Thereby, to find eigenvectors and eigenvalues of the linear operator, we have to 

solve the following homogeneous system: 

 

 

 

















0...

...

0...

0...

2211

2222121

1212111

nnnnn

nn

nn

xaxaxa

xaxaxa

xaxaxa







     (3.19) 

 The homogeneous system (3.19) with n equations and n variables has a 

nonzero solution if and only if its matrix is singular, i.e. we require that 

  0

...

............

...

...

21

22221

11211



















nnnn

n

n

aaa

aaa

aaa

D  or   0det  IA    (3.20) 

 Equation (3.20) is called a characteristic equation, and the left-hand side 
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of this equation is a polynomial in the variable λ called the characteristic 

polynomial. 

 

 The following theorem is valid. 

 Theorem. The eigenvalues of a linear operator coincide with the roots of 

the characteristic polynomial. 

 

 Next, we need to find the eigenvectors after the eigenvalues have been 

computed. For this purpose, we substitute each computed eigenvalue into (3.19) 

to find a nonzero solution of the system, which is associated with the 

coordinates of the eigenvector appropriate to this eigenvalue. 

Example 3.17. Find eigenvalues and eigenvectors of the linear operator 

which is presented by a matrix 









73

26
A . 

 Solution. Write the equation (3.18) for the given matrix A and unknown 

coordinates of the vector  T

21 x,x=x : 

0
73

26

2

1






















x

x




. 

Then, compose the characteristic equation (3.20)  

  0
73

26
det 









IA , 

Computing the determinant as usual, the result is 

   0676     066742 2   ,  036132   , 

Solving this equation, we find the roots: 

91  , and 42   

They are eigenvalues of the operator presented by the matrix A. 

 Now we need to find the basic eigenvectors for each λ. First we will find 
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the eigenvectors for 91  . We wish to find all vectors 0X  such that 

9AX X . These are the solutions to  9 0A I X  , i.e.  

0
23

23

2

1






















x

x
  









023

023

21

21

xx

xx
 

It follows from the solution of the system:  

1221
2

3
,23 xxxx  . 

Then, any vector of the form   11 23;1 xx 


 is the eigenvector corresponding to 

the eigenvalue 91 =λ . If we assign 21 x , the eigenvector is  3;21 x


. 

Analogously, for the second eigenvalue 42 =λ . If follows from the 

solution of   04  XIA : 

















,0

33

22

2

1

x

x
 2121 ,022 xxxx  . 

Thus, any vector of the form   22 1;1 xx 


 is the eigenvector, e.g. at 12 x  

 1;12 x


 is the eigenvector corresponding to the eigenvalue 42 =λ . 

 

 Note. If the matrix operator A is an 𝑛 ×  𝑛 matrix, then the characteristic 

polynomial of the operator A will have degree n.  Since, the characteristic 

equation (3.20) is a polynomial of the n-th degree with respect to , let's denote 

it as  λP .  

 It should be noticed that finding the eigenvalues can be computationally 

challenging and could be done using a computer in most cases. In addition, the 

roots of characteristic polynomials can be both real and complex. 

 According to the basic theorem of algebra, any polynomial of the n-th 

degree has at least one root, which is either real or complex. Thereby, we can 

notice that 

1. A linear operator in a complex finite-dimensional linear space has always 
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at least one eigenvector; 

2. If a linear operator is defined in a real linear space, then the polynomial 

 λP  has real coefficients. Moreover, if n is odd, then the characteristic equation 

has at least one real root, as a result, the linear operator has at least one 

eigenvector. 

3. A linear operator in an n-dimensional space cannot have more than n 

various eigenvalues, because the characteristic equation is n-th degree.  

4. Eigenvectors nxxx


,...,, 21  of linear operator A  corresponding to pairwise 

distinct eigenvalues nλ,,λ,λ ...21  are linearly independent. 

Proof. (We use the method of mathematical induction). 

Obviously, for 1=m  the statement is true. Suppose that it is valid for 

 -1m  eigenvectors of the operator A , and check it for m  eigenvectors. 

Let's assume the opposite. Let m  eigenvectors be linearly dependent, i.e. 

0...2211


 mm xxx  ,    (3.21) 

and at least one of the coefficients in (3.21) is not equal to zero, for example, 

0≠1α . Applying the operator A  to (3.21), we get for each term: 

   11111 xx


 A ,    22222 xx


 A , …,    mmmmm xx


 A  

By the properties of the linear operator, we can write 

0...222111


 mmm xxx  .   (3.22) 

Multiplying (3.21) by mλ  and subtracting it from (3.22), we get 

      0... 111222111


  mmmmmm xxx  .

 (3.23) 

 Due to the assumption of the statement, (m-1) eigenvectors are linearly 

independent, that is all the coefficients in (3.23) must be equal to zero. 

Therefore,   011  m , but it contradicts the assumption that 0≠1α . So, the 

assertion is proved. 
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5. If all n roots of the characteristic polynomial nλ,,λ,λ ...21  are distinct, 

then the corresponding eigenvectors n21 x,...,x,x  are linearly independent and 

they can be taken as a basis of the n-dimensional space K.  

 

 A diagonal operator matrix 

 If we have a basis that consists of eigenvectors of an 𝑛 ×  𝑛 matrix 𝐴, then 

the representation of matrix  𝐴  with respect to that basis is diagonal.  

Indeed let's construct an operator matrix in a basis of its eigenvectors 

 n21 x,...,x,x . We need to apply consequently the operator to each eigenvector, 

then, we get 







































nnn

n

n

nnn xxxx

xxxx

xxxx

xx

xx

xx

























...00

...

0...0

0...0

...

21

2212

2111

222

111

A

A

A

A

A

A

 

That is, the operator matrix is diagonal matrix whose diagonal elements are the 

eigenvalues listed in the same order as the corresponding eigenvectors:  

  





















n

A







...00

............

0...0

0...0

2

1

 = diag{1; 2; … ; n} (3.21) 

In this case, the characteristic polynomial of the operator A  is calculated easy as 

a product of the following linear factors: 

        nP ...21 . 

 So, a diagonal operator matrix has an advantage from a computational 

viewpoint. 

 It should be noticed that any operator matrix A given in any basis  ie


 can 

be reduced to a diagonal form. We will do so using the representation of the 

operator matrix A with respect to a new basis formed by its eigenvectors  ix


. If 
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the eigenvectors  ix


 of the operator matrix A have been calculated, then, each 

basis vector of the “new” basis  ix


 can be expressed as a linear combination of 

the vectors of the “old” basis  ie


 in accordance with (2.11) as follows: 

1GTH . Herewith the inverse matrix T-1 is a transition matrix C from the 

“old” basis to the “new” basis, i.e.      
EnEE xxxCT ,...,,} 21

1 
 .  

 Thus, the matrix of the operator А in the basis of eigenvectors  ix


 and that 

in the given basis  ie


 are connected by the formula: 

  CACA ex

1  (3.22) 

 

 For instance, the eigenvectors of the operator A found as  3;21 x


 and 

 1;12 x


 in the previous example, form the transition matrix C in the form:








 


13

12
C . Inverting this matrix gives us 












23

11

5

11C . Finally, the 

diagonal form of the matrix A in the basis of these eigenvectors is as follows: 


























 




















40

09

200

045

5

1

13

12

73

26

23

11

5

1
eA . 

 

Example 3.17. Linear operator A  in a natural basis has a matrix  



















111

111

111

A . 

Find the matrix B of this operator in the basis of its eigenvectors, as well as the 

matrix C of the transition to this basis. 

Solution. First of all, find the eigenvalues and eigenvectors of the 

operator. To this end, we form a characteristic equation: 
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  0

111

111

111

det 















IA . 




























21
23

12 110

011

111

0

0

111

111

111

111
2

rrrr
rr

















 

 

01,2 =λ ; 33 =λ  are eigenvalues of the operator. 

Find the corresponding eigenvectors for 02,1  . After substitution 

eigenvalue into equation (3.17), we obtain: 0

111

111

111

3

2

1


































x

x

x

. 

We solve the obtained SLAE. Performing an elementary transformations 

with a matrix (A-I), we come to the equivalent matrix: 

 111~

111

111

111

















. 

Thus, the homogeneous system is reduced to the following equation: 

0321  xxx ,   321 xxx  . 

 Let us find the fundamental system of solutions (FSS). Assigning x2 and x3 

as free variables, we can compose two eigenvectors: 

FSS 1x  2x  3x   

1e


 -1 1 0  eigenvector 

2e


 -1 0 1  eigenvector 
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Thus, the corresponding eigenvectors 1e


 and 2e


 are obtained.  

 Similarly, we find eigenvectors that correspond to eigenvalue 33 =λ . 

After substitution 33   into the system of equations (3.17) we obtain: 

0

211

121

112

3

2

1








































x

x

x

. 

Solving the SLAE: 






























































110

121
~

330

330

121

~

211

121

112

23

12

12
2

rr
rr
rr

. 

Thus, the system is reduced to the following one: 

 

















.

,

.2

,

31

32

321

32

xx

xx

xxx

xx
 

 The variable x3 is free. Assigning its value equal to 1, then, we have 11 x

, 12 x . Thus, the eigenvector 3e


 is defined as 

 1;1;13 e


. 

 Let's form a matrix from eigenvectors, i.e. a matrix of transition from a 

natural basis to a basis of eigenvectors: 















 



110

101

111

C . 

Then, the matrix A in the basis of the eigenvectors is defined as ACCB 1 . 
































 































 





300

000

000

110

101

111

111

111

111

110

101

111
1

B  

One can that the matrix is diagonal with eigenvalues on the leading diagonal. 

 Also, we can directly build the matrix B without the transition matrix. As 
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described earlier, we need to obtain the vectors 1e


A , 2e


A , 3e


A  as follows:  

3211111 0000 eeeeee

 A , 

3212222 0000 eeeeee

 A , 

3213333 3003 eeeeee

 A , 

Thereby, we get  



















300

000

000

B . 

 

 3.5. Operations with Linear Operators and their Matrices 

 Let operators A  and B  be given in the linear space K. The operators A  

and B  are called equal if the following equality holds 

xx


BA  , Kx


. 

 Let  ija=A  and  ijb=B  are matrices of these operators in some basis 

 
niie

,1


. Since, one can present  

nnjjjj eaeaeae


 ...2211A , 

nnjjjj ebebebe


 ...2211B , 

and jj ee


BA  , we get that ijij b=a , n=ji, 1,∀ .  

 That is, the equal operators have the same matrices in the same basis. 

 

 Definition. The sum of two linear operators is a linear operator BAC  , 

which is defined according to the rule: 

  xxxx


BABAC  . 

It is easy to prove that the operator BAC   is linear if both the operators A  

and B  are linear operators. 

 Let’s consider the linear operator matrix BAC   in a basis  
niie

,1


. 
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Suppose the operator A  is represented by a matrix  ija=A , the columns of 

which are the coordinates of the vectors je


A  in this basis. Similarly, the 

operator B  is represented by a matrix  ijb=B  with the vectors je


B  in the same 

basis. Then, the matrix of the operator BAC   can be composed in the form: 

   ebebebeaeaeaeee njjjnnjjjjjj


...... 22112211BABA  

      nnjnjjjjj ebaebaeba


 ...222111 . 

 It is obvious that the matrix of the operator BAC   in the basis  
niie

,1


 

is a sum of the matrices of these operators in the same basis. 

 

 Definition. The product of two linear operators BA   is a linear operator C 

such that  

 xx


 BAC  . 

 It is defined that BAC   is a linear operator if both operators A and B  

are linear (here without proof).  

 The matrix of the operator C is equal to the product of the matrices 

corresponding operators, i.e. BAC  . 

 

 If IBA  , then it is to be said that B  is an inverse operator to A  and is 

denoted as 
1 AB . 

 Using the matrix representation of the operators as matrices A and B, 

respectively, in a given basis, one can say that the operator I is presented by an 

identity matrix. That is, 

IBA     
1 AB . 

 Definition. For any vector 
nRx


, a linear operator I represented by the 

𝑛 × 𝑛 identity matrix I, which maps every vector x


 into itself is called an 

identity operator, that is  
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xx


I  

 Note. the inverse operator has a matrix inverted to the operator matrix A . 

Obviously, this matrix is non-singular. 

 

 3.6. Simple Structure Operator 

 If the linear operator A  has n linearly independent eigenvectors in an n-

dimensional space K, then it is called a simple structure operator 

 

 A sufficient condition of a simple structure operator: 

 If roots of the characteristic equation of a linear operator are distinct, the 

operator has a simple structure. 

 Indeed, in the case of n distinct eigenvalues of an operator, it has, pairwise 

n distinct eigenvectors, which are linearly independent ones. So they can form a 

new n-dimensional basis. In this basis, the matrix of a linear operator is 

diagonal. 

 In other words, an operator matrix is diagonalizable if there exists a basis 

of eigenvectors.  

 Recall that the multiplicity of an eigenvalue λ is the number of times that it 

occurs as a root of the characteristic polynomial. Let’s consider now the 

following lemma.  

 Lemma. If λ is an eigenvalue of a linear operator A, then the number of 

linearly independent λ-eigenvectors (associated with eigenvalue λ) is never more 

than the multiplicity of λ.  

 

 We now use this fact to provide a theorem: 

 Theorem. To provide the existence of the eigenvectors basis, it is necessary 

and enough that to each eigenvalue there exist so many linearly independent 

eigenvectors, what is equal to multiplicity of this eigenvalue. 
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 Since the linear operator has similar matrices in different bases, we can use 

the theorem to provide a diagonalizability condition of the operator matrix: 

 Theorem. Let A be a linear operator represented by an 𝑛 × 𝑛 matrix A. 

Then, A is diagonalizable if and only if for each eigenvalue λ of A, the 

dimension of the operator eigenspace 𝑑𝑖𝑚 (𝐸𝜆(𝑨)) is equal to the multiplicity of 

λ . 

 

 Example 3.18. Check a diagonalizability  of the linear operator matrix 

given in the natural basis of linear space 𝑅2 in the form: 













31

11
A . 

 Solution. Find the eigenvalues of the operator A. 

       0244131
31

11
det

22 



 




IA . 

So, 2  – eigenvalue of operator A of multiplicity 2. 

The corresponding eigenvectors follow from solving the SLAE 

 0
231

121

2

1






















x

x
.  21

21

21

0

0
xx

xx

xx









. 

Thus,  1;11 x


 is an eigenvector corresponding to 2=λ . That is, we have that 

the fundamental system of solutions consists of one vector. Then all other 

solutions can be expressed through 1x


, which implies that any 2 eigenvectors 

will be linearly dependent. Thus, in linear space 𝑅2 there is no eigenbasis of the 

linear operator A. Thus, the linear operator A is not an operator of simple 

structure. 
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Chapter 4. EUCLIDEAN SPACE AND ORTHONORMAL BASIS 

 4.1 The Concept of Euclidean Space 

Definition. A Euclidean space is a finite-dimensional vector space over 

the reals R, with a scalar product defined such that to each pair of elements of 

this space x


 and y  matches a scalar denoted by . The properties of the 

scalar product comply with the following axioms: 

1. (𝑥⃗, 𝑦⃗) = (𝑦⃗, 𝑥⃗) 

2.  (𝛼𝑥⃗, 𝑦⃗) = 𝛼(𝑥⃗, 𝑦⃗) 

3.  (𝑥⃗ + 𝑧, 𝑦⃗) = (𝑥⃗, 𝑦⃗) + (𝑧, 𝑦⃗) 

4.  (𝑥⃗, 𝑥⃗) > 0, if 𝑥⃗ ≠ 0 

 

Consequences of the axioms: 

1.    y,x=y,x


  

Indeed,  

2.  

Indeed, (𝑥⃗, 𝑦⃗ + 𝑧) = (𝑦⃗ + 𝑧, 𝑥⃗) = (𝑦⃗, 𝑥⃗) + (𝑧, 𝑥⃗) = (𝑥⃗, 𝑦⃗) + (𝑥⃗, 𝑧) 

 

Examples of scalar products in different spaces. 

1. In vector spaces of real numbers R2 and R3, the scalar product is given by 

 

All axioms can easily be verified as done in the course of analytical 

geometry. One can notice that this is specifically the case when a Cartesian 

coordinate system has been chosen, as, in this case, the scalar product of two 

vectors is the dot product or scalar product of their coordinate vectors. 

2. A space continuous functions in the closed interval [a, b] denoted as 

 yx,

     yxyxxyxyyx ,,,,,  












     zxyxzyx ,,, 

 

















yxyxyx ,cos,
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 baC , , the scalar product is defined by 

 

All axioms are fulfilled due to the properties of the definite integral. It 

should also be noted that in this space one can introduce the scalar product using 

other definitions. For example, one can present the scalar product in  baC ,  in 

the form: 

, 

where  – an arbitrary nonzero function continuous on [a, b]. 

 

Example 4.1. Consider an n-dimensional vector space over a field of 

complex numbers. Let's choose the basis in this space  
niil ,1 . Then 

 

Based on the properties of the scalar product: 

   
 


n

i

n

k
kiki

n

k
kk

n

i
ii llyxlylxyx

1 111

,,


 

We denote , where  in accordance with the axiom 4. 

Hence,  

  
 


n

i

n

k

kiik yxyx
1 1

, 


    (4.1) 

The relation (4.1) is a general form of the scalar product in a finite-

dimensional space, expressed via the coordinates of vectors. 

 

 4.2. Orthogonality and Modulus of the Vector 

        dttytxtytx

b

a

 ,

       dttytxtyx

b

a

 
2, 

 t

nn

nn

lylylyy

lxlxlxx





...

...

2211

2211

  ikki ll , 0ii
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Let E be an arbitrary Euclidean space.  

Definition. Vectors  and  are called orthogonal if their scalar 

product is zero, i.e.  

. 

In this case, we write 𝑥⃗  ⊥ 𝑦⃗.  

Definition. The modulus of the vector  is a non-negative real 

number, which is determined by the formula: 

 xxx


,       (4.2) 

In the spaces R2 and R3, the orthogonality of vectors means their 

perpendicularity, and their moduli are their lengths. 

Example 4.2. Let  be an Euclidean space defined over the field of 

complex numbers. Then orthogonal vectors x


 and y  satisfy the ratio 

∑ ∑ 𝛼𝑖𝑘𝑥⃗𝑖𝑦⃗𝑘
𝑛
𝑘=1

𝑛
𝑖=1 = 0     (4.3) 

In particular, if 

𝛼𝑖𝑘 = {
0, 𝑖 ≠ 𝑘
1, 𝑖 = 𝑘

 

then the relation (4.3) takes the form: 

∑ 𝑥⃗𝑘𝑦⃗𝑘
𝑛
𝑘=1 = 0     (4.4) 

Then, the vector modulus can be calculated by  

      (4.5) 

In the space E = Rn
 instead of formulas (4.4) and (4.5) we obtain: 

0
1




n

k
kk yx      (4.6) 

      (4.7) 

Example 4.3. In the space  baC ,  the orthogonality of the elements means 

Ex Ey

  0, yx

Ex

nTE 





n

k

kxx
1

2





n

k

kxx
1

2
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that , where . 

In a general case, the modulus of an element of an arbitrary Euclidean 

space is called the norm and is denoted as 

 xxx


, . 

In the spaces R2 and R3, the norm coincides with the length of the vector x


, i.e. xx


 . In the space  baC ,  the norm of elements is defined as: 

 

or if , then 

. 

From the definition of the norm it follows that 

1) , at 𝑥 ≠ 0 and 0x


, only when . 

2) xx


  . 

If  then the vector x


 is called normalized.  

Obviously, any nonzero vector can be normalized by multiplying it by a 

factor . Then 
x

x
y 



 , and 1y


. 

 

 4.3. Schwartz and Cauchy-Bunyakovsky Inequality 

Let E coincide with a three-dimensional Euclidean space (E=R3) with an 

scalar product: 

     (4.8) 

      0)(   dttytxtpyx

b

a

   battp ,,0 

     
21

2








 

b

a

dttxttx 

  1t

 
21

2








 

b

a

dttxx

0x x

1x

x

1


 

















yxyxyx ,cos,
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Taking into account that , it follows from (4.8): 

,    (4.9) 

that is 

     (4.10) 

We show that inequality (4.10) is valid in any Euclidean space. For this 

purpose we will take arbitrary elements Ex 


, Ey


 and any scalar R . 

Then, 

    (4.11) 

The left-hand side of the inequality can be expanded in the form: 

        0,  y,yxyy,xx,x


 , 

that is 

        0,  y,yxyy,xx,x


 , 

or 

    0,
222
 yxyy,xx


 .   (4.12) 

This inequality is valid  . Let's choose , then the inequality 

(4.12) takes the form: 

 
 

 
 

 
0

2

4

2

22

2
 y

y

y,x
y,x

y

y,x
y,x

y

y,x
x

















, 

or 

 
0

2

2
2


y

y,x
x 




, 

1,cos 












 

yx

  yxyxyxyx 

















,cos,

  yxyx ,

  0,
2

 yxyxyx 

 
2

,

y

yx

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that is 

     (4.13) 

Taking into account that , , the inequality (4.13) can be 

rewritten as: 

     (4.14) 

This inequality in any Euclidean space is called the Schwartz inequality.  

Let's write it in another form, extracting the square root of both parts 

    (4.15) 

 

In an n-dimensional Euclidean space with a natural basis, this inequality 

will be written as follows: 

     (4.16) 

The inequality (4.16) is called Cauchy inequality. 

 

In space  baC , , the inequality (4.15) takes the form: 

   (4.17) 

The inequality (4.17) is called Bunyakovsky's inequality. 

 

 4.4 Orthogonal and Orthonormal Basis. Gram-Schmidt procedure. 

Definition. The basis of Euclidean space  
niil ,1


 is called orthogonal if 

the scalar products of distinct basis vectors are zero, 

0),( ji ll


 at ki  . 

  222

, yxyx 

xx 
2

yy 
2

  222

, yxyx 

  yxyx ,

 
 


n

k

n

k

kk

n

k

kk yxyx
1 1

22

1

          

b

a

b

a

b

a

dttydttxdttytx
22
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If, in addition, the modulus of each basis vector is one, , , 

then the basis is called orthonormal (ONB), i.e.  










ki

ki
ll ijji

if,1

if,0
),( 


. 

Lemma. Pairwise orthogonal nonzero vectors are linearly independent. 

Proof. Let the vectors  
miix

,1  be pairwise orthogonal, i.e.   0, ki xx  if 

ki  . At the same time all 𝑥𝑖 ≠ 0. 

Suppose that 

      (4.18) 

Taking the scalar products for both of parts (4.18) with vectors kx  

 and accounting the properties of the scalar product, we get that 

  0,
1

1 


m

i
ki xx , nk ,1 . 

Let k = 1, then 

          


0,0,,,0, 11111111
1

11 xxxxxxxxxx i

m

i
i    

Similarly, we can show that all i  in (4.18) is zero, i.e.  
miix

,1  are 

linearly independent.  

 

Theorem. Every Euclidean space has an orthonormal basis.  

Proof. Let E be an n-dimensional linear space. Then there always are n 

linearly independent vectors  
niil ,1 . Let's denote 

 11 ll


 and construct a vector

  11122 lll


 . Herewith, it should be noticed that 02 l


 as the system of 

vectors  
niil ,1


 is linearly independent. Coefficient 11  choose so that the 

1il ni ,1

0
1




i

m

i

i x

 nk ,1

01 
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vectors 


1l


 and 


2l


 were orthogonal, i.e.  

  0, 21  ll


      0,, 111112   llll


   
 
 

 
 





11

12

11

12
11

,

,

,

,

ll

ll

ll

ll








 . 

Next, let's compose a vector 


3l


: 

  22212133 llll


 , 

where 03 l


, since 


1l


,


2l


 and 3l


 – are linearly independent. 

Let's choose 21  and 22  so that the vector 


3l


 will be orthogonal to the 

vectors 


1l


 and 


2l


, i.e. 

        0,,,,

0

122211211313 








llllllll  , 

    0,, 112113   llll


   
 
 



11

*
13

21
,

,

ll

ll




  

Similarly, 

      0,,, 22222323   llllll


 ,  
 
 





22

23
22

,

,

ll

ll




 . 

If (n-1) vectors pairwise orthogonal are constructed in the same way, then the 

vector 


nl


 can be chosen in the form: 










  11,122,111,1 ... nnnnnnn lllll


 , 

where 0
nl


, since nl


 and  
1,1 


niil


 are linearly independent.  

We will demand 


nl


 to be orthogonal to all the other vectors  
1,1 


niil


. That is, 

we have the following (n - 1) conditions: 

 
 

 


























.0,

.......

,0,

,0,

1

2
*

1

nn

n

n

ll

ll

ll







 



92 
 

All unknown coefficients will be determined from this system as follows: 

 
 



 

kk

kn
kn

ll

ll




,

,
,1 , 1,1  nk . 

Thus, for an arbitrary basis  
niil ,1


 it is always possible to construct n pairwise 

orthogonal vectors, which by virtue of the lemma will be linearly independent. 

If each vector of the orthogonal basis  
niil ,1




 is divided by its norm, we 

obtain an orthonormal basis: 





1

1

l

l




;




2

2

l

l




; …;




n

n

l

l




. 

 That is, there exists a set of orthonormal linearly independent vectors which 

span a particular Euclidean space.   

 

 Note: 

 1. A Euclidean space has more than one orthonormal basis. 

 2. The algorithm described above in the proof for orthonormalizing a set of 

vectors in a Euclidean space is called the orthogonalization process (or Gram–

Schmidt orthogonalization).  

 The scalar 
 
 jj

ji

ji
ll

ll




,

,
,1   is called the Fourier coefficient of il


 with 

respect to jl


. The basic operation related to finding an orthogonal vector is 

called orthogonal projection. This operator projects the vector il


 orthogonally 

onto the line spanned by vector jl


as 
 
  j

jj

ji

il
l

ll

ll
lproj

j









,

,
 . 

 

Example 4.3. Find the orthogonal basis in the space of polynomials not 

higher than the second degree, which are defined on the segment [-1; 1]. 
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Solution. As a starting point we take the natural basis as a system of the 

following functions:  

10 l


, tl 1


, 

2
2 tl 


. 

 Then, we will find a vector 


1l


 orthogonal to the first basis vector 00 ll



 as 

  01011 lll


 . That is, using orthogonal projection (taking the scalar product of 


1l


 and 


0l


 and equating it to 0) we get 

01
1

1

10

0

1

1

 






dttdt 



 0210    
 
 

0
,

,

00

01
10 





ll

ll




 , tll  
11


. 

Similarly, 
  12102022 llll


 . Then, appropriate orthogonal projections 

lead to  

 
3

2

3
,

1

1

31

1

2
02 






t
dttll


; and   211,

1

1

1

1

0
*

0 





 tdtll


; i.e.  

 
  3

1

,

,

00

02
20 





ll

ll




 ; 

  0
4

,

1

1

41

1

3
12 






t
dttll


;  

 
 

0
,

,

11

12
21 





ll

ll




 . 

Thereby, we have a second basis vector 
3

12
2  tl


. 

Summarizing all the vectors we get the orthogonal basis in the form: 

10 l


,  

tl 
1


, 

3

12
2  tl


. 

Let's find the norms of these vectors: 
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, 

, 

; 

Finally, the vectors ; ; and 
 
 form an orthonormal basis 

of the space of polynomials not higher than the second degree defined on the 

segment [-1; 1]. 

 

 4.5. Orthogonal Complements 

Definition. If Ey  is an element of a given linear space such that 

satisfies the condition   0, xy , i.e. xy   Lx , where L is a subspace of the 

space E, then it is said that the vector y  is orthogonal to subspace L. The set of 

all elements Ey , orthogonal to L, is called an orthogonal complement of the 

subspace L and is denoted as 
L  (read “L perpendicular”). 

Lemma. If L is subspace of the space E, i.e. EL⊂ , then its orthogonal 

complement also forms a subspace of the space E, i.e. EL ⊂ .  

Proof. Take any two elements 1y  and 2y  in the 
L . Then

    0,0, 21  xyxy , Lx . Consider the case 21 yy  : 

      0,,, 2121  xyxyxyy , i.e. 
 Lyy 21 .  

Similarly, 
 Ly1 , since     0,, 11  xyxy  , Lx .  

 

2

1

1

*

0  


dtl

3

2
1

1

2*

1  


dttl

5

2

3

2

45

4
2

9

1

5

1
2

9

1

3

2

3

1
1

1

24

1

1

2

2*

2 


































 



ttdttl

2

1

2

3t

22

53
3

12 







t
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Example 4.4. Let L be a one-dimensional subspace of two-dimensional 

space V2 (plane). Then 
L  is a line in this plane perpendicular to the line L. 

 

Example 4.5. Let L be a plane in three-dimensional space V3 that passes 

through the origin, then 
L is a perpendicular to this plane and is also passing 

through the origin. 

Let E be an arbitrary space, and L be its subspace and 
L  be its 

orthogonal complement. We also suppose that an element Lx  and 
 Lx  

exists. That means   0,0,  xxx . So,  

0 LL . 

Theorem. In any Euclidean space, the sum of the dimensions of the 

subspaces L and 
L  always equals to the dimension of the whole space. 

Proof. Suppose that a subspace L is given in space E, and its dimension is 

equal to k, i.e. k=L dim . Also, let the dimension of its orthogonal complement 

be equal to m, m=L dim . 

Suppose orthonormal bases in L and 
L  are given by vectors kggg ,...,, 21  

and mfff ,...,, 21 , respectively. Let x  be an arbitrary vector 
nEx . We can 

construct a new vector y  as follows: 

 



k

i
ii ggxy

1

,      (4.19) 

Obviously, this vector belongs to the same space, Ly .  

In the same way, we construct the other vector 

  i

k

i
i ggxxyxz 




1

,     (4.20) 

 Taking scalar products of each side of the equality (4.20) with respect to 
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the vector  kjg j ,1 , we get 

             












 



k

i
jiijji

k

i
ijj

ij

gggxgxgggxgxgz
11

,,,,,,,




 

    0,,  jj gxgx . 

Thus, the element z  is orthogonal to each of the vectors of the basis 

kggg ,...,, 21 . Then any vector 𝑦→ ∈ 𝐿 satisfies condition  𝑧→ ⊥ 𝑦→. That means 

Lz  , i.e. 
Lz . 

In this case z  can be represented in the basis of vectors mfff ,...,, 21  as: 

l

m

l
l fz 




1

 ,     (4.21) 

where  ll fz,  are coefficients and 
mllf ,1  are vectors of the orthonormal 

basis. 

Let's denote   ijgx , , then 

 yzx  

i

k

i
i

m

l
ll gfx  

 11

     (4.22) 

Thus, the element nEx  can be decomposed in the basis vectors: 

mk fffggg ,...,,,,...,, 2121     (4.23) 

The vectors from (4.23) are pairwise orthogonal, i.e.   0 ji fg , ki ,1  

and mj ,1 , as they are basis vectors of 
kiig

,1  and 
mjjf

,1
.  

Thus, the vectors (4.23) are linearly independent, so they form a basis in En and 

their common number is nmk  . That is 
nELL dimdimdim  
  

The latter means that En is a direct sum of subspaces L and 
L  and is 
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denoted as: 

 LLEn  

 

Definition. A space R is a direct sum of subspaces R1 and R2, if Rx  is 

a decomposition 21 xxx


 , where 11 Rx 


, 22 Rx 


. In doing so, this 

decomposition is the only one. 

Remark. Analogously to the three-dimensional space R3, in the case of 

arbitrary Euclidean space En, a vector y , which is represented by expression 

(4.19), is called the orthogonal projection of the vector x  on subspace L, and the 

vector yxz   is orthogonal projection of the element x  on subspace 
L  (see 

Figure 4.1) 

 Example 4.6. A subspace L is formed by a spanning set of vectors 

 2;3;1;21 a ,  1;5;2;42 a ,  8;1;1;23 a . Find the basis of orthogonal 

complement 
L . 

Solution. Let us check whether all vectors are linearly independent, and 

define the dimension of the subspace, Ldim . 

 







































































5100

5100

2312

~

10200

5100

2312

~

2

8112

1524

2312

113

121

rrr

rrr

z  
x  

y  

O 

y  

Fig. 4.1 
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. 

That is only two vectors, for example, 1a  and 2a  are linearly 

independent, and they can be taken as a basis of this subspace L. 

Let    Lx 4321 ,,,  , then in accordance with the orthogonal 

complement’s properties, we have 

 
  




























4312

43

43

4321

2

1

232

5

05

0232

0,

0,









ax

ax
 










4312

43

232

5













414412

43

1322532

5




 

In this homogeneous system of SLAE, two free variables are assigned as 

1ξ  and 4ξ . That is the dimension of the subspace is . The FSS 

associated with this system can be found as  

 

 

 

 

 Hence, the vectors  0;0;2;11 e  and  1;5;13;02 e  form a basis in 
L . 

 

Example 4.7. A subspace 
4RL   is given by the system of homogeneous 

equations as 














0455

02

032

4321

4321

4321






. 

Find the basis of the orthogonal complement 
L . 

Solution. Compose a matrix of homogeneous SLAE and calculate its rank 

by reducing this matrix to the row echelon form as follows: 

2dim L

 1  2  3  4  

1e  1 2 0 0 

2e  0 13 5 1 
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~
3230

1321
~

3230

3230

1321

~

4551

2111

1321

13

12 



























































rr

rr  














3230

2111
~ , 

 Hence, 2Rg =A . 

It means that the system is reduced to two equations and has two linearly 

independent solutions, as a result, 2=L dim  and 2=L dim . 

Determine the solution of the reduced system: 









0323

02

432

4321




 

Suppose that 3ξ  and 4ξ  are free variables. Then 

 

  4343434321

432

3
3

1
232

3

1
2

32
3

1









 

The FSS is calculated as  

 

 

 

 

That is, the basis vectors of L are 1e  and 2e  such that 

 0;3;2;11 e  and  1;0;1;32 e  

To find the basis of the orthogonal complement 
L , we have to write: 

 
 







0,

0,

2

1

ex

ex
, i.e. 









03

032

421

321




. 

Let's find the FSS of this system of homogeneous equations 

 1  2  3  4  

1e  
3

1
 

3

2
  1 0 

2e  3 1 0 1 
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


















 

1970

0321
~

1013

0321

097

032

432

321










321

324

32

97








 

 

 

 

 

 

That is, the vectors  7;0;1;21 b ,  9;1;0;32 b  form a basis of 
L .  

 

 4.6. The Gram determinant 

Suppose that vectors 
kiig

,1
 are given in the linear space E. The Gram 

matrix (or Gramian matrix, Gramian) is a matrix whose entries are given by the 

scalar product    jiij ggg , , kji ,1,  .  

Then, the determinant of this matrix is called the Gram determinant and 

looks like  

     
     

     kkkk

n

n

gggggg

gggggg

gggggg

,...,,

............

,...,,

,...,,

det

21

22212

12111

 ,   (4.24) 

Suppose that the vectors 
kjig

,1
 are linearly dependent. For instance, a 

vector kg  is a linear combination of vectors kggg ,...,, 21  as a result the k-th 

column of the determinant will be a linear combination of the other its columns. 

That is, the Gram determinant is equal to zero, 0Δ= . 

 

Theorem. If the vectors 
kiig

,1
 are linearly independent, then Gram’s 

determinant of these vectors is nonzero, i.e. 0≠Δ . 

 1  2  3  4  

11 eb   2 1 0 -7 

22 eb   -3 0 1 9 
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Proof. Suppose the opposite, that the Gram’s determinant 0Δ= . Then, 

based on the properties of the determinant, one of the columns (rows) is a linear 

combination of the others. Therefore, there is a nonzero set of numbers 

nα,,α,α ..21 , such that 

0
1




n

i

ii g ,     (4.25) 

where ig  is a vector whose coordinates coincide with the entries of the i-th row 

of the determinant (4.24). 

Equation (4.25) is equivalent to k equalities in the form: 

      0,..,, 1122111  gggggg kk , 

or 

   0,... 12211  gggg kk     (4.26) 

Let's denote the sum of k terms as a new vector: 

yg
k

i

ii 
1

      (4.27) 

It is obvious that Ly . 

Then, the equality (4.26) takes the form: 

  0, 1 gy       (4.28) 

That is, the vectors are orthogonal 1gy  . 

Similarly, we can write the other equalities, i.e. the following system 

occurs: 

     

     











0,...,,

...

0,...,,

2211

2222211

kkkkk

kk

gggggg

gggggg





    (4.29) 

Further, 
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 

 


























0,

...

0,

1

2
1

ki

k

i
i

i

k

i
i

gg

gg





,     (4.30) 

Finally, we take the form: 

 
 

 

















0,

...

0,

0,

3

2

kgy

gy

gy

       (4.31) 

It follows from the equations (4.28) and (4.31) that 

igy  , ki ,1  

Thus, if L is a set of spanning vectors  
kiig

,1 , then Ly   and 
 Ly . On the 

other hand, it follows from (4.27) that Ly . So,  

    0  yLyLy  

With this fact, it follows from (4.30) that 0
1

2




k

i
i . It means that the vectors 

 
kiig

,1  are linearly dependent. However, this contradicts with the conditions 

of the theorem.  

 

 4.7. Orthogonal Projection 

Let’s consider two subspaces L and 
L  of the space En, where the 

dimension of the subspace L is k=Ldim . Suppose 
nEx  is a given nonzero 

vector of this space, and suppose y  is another vector. We seek for the 

orthogonal projection of y  onto the subspace L. Let a basis of L be given by the 
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vectors  
kiig

,1 . Then the vector y  can be represented there in the form: 





k

i

ii gy
1

       (4.32) 

So, the problem is reduced to finding the coefficients of decomposition i  

in (4.32). Recall if the basis 
kiig

,1  is orthonormal, then we have that 

 ii gx, , ki ,1 . However, in our case, we have chosen an arbitrary basis as a 

result the problem turns into a more general one. 

Let z


 be projection of vector x  along 
L . Then Lz  , i.e. igz  , 

ki ,1 . That is   0, igz , ki ,1 , or   0,  igyx , or    ii gygx ,,  . By 

assigning i with values k,1,2,...  consequently, we get 

   
   
   













kk gygx

gygx

gygx

,,

,,

,,

22

11

      (4.33) 

Substituting (4.32) into the system (4.33), we can write 

       
       
       














kkkkkk

kk

kk

gxgggggg

gxgggggg

gxgggggg

,,...,,

,,...,,

,,...,,

2211

22222211

11122111







  (4.34) 

Since the vectors  
kiig

,1  are known, all the scalar products  
ji gg ,  are 

known except for the coefficients 
kii ,1

 . One can see that the determinant of 

the system (4.34) is the Gram determinant which is constructed by linearly 

independent vectors  
kiig

,1 , i.e. the determinant 0≠Δ . Therefore, the system 

(4.34) has a unique solution. After finding this solution, the coefficients 


kii ,1

  will be known, in turn, the vector y  will be found. 

Suppose that the basis  
kiig

,1  is orthogonal, i.e.   0, ji gg   ji  . 
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Thus, the system (4.34) takes the form: 

   
   
   

 
















22222

1111
,

,,

,,

,,

i

i
i

kkkk
g

gx

gxgg

gxgg

gxgg









, ki ,1  . 

That is, if the basis is orthonormal, then, the coefficients iξ  are 

determined by a simpler formula such that   
ii gx, .  

 

Example 4.8. Find the orthogonal projection of the vector  4,3,1,4 x  

given in the arithmetic space R4 onto the space L and also its projection onto the 

orthogonal complement 
L  (i.e. so-called an orthogonal component), if it is 

known that L is spanned by the vectors  1;1;1;11 x ,  1;2;2;12 x , 

 3;0;0;13 x . 

Solution. To find the basis of the subspace L, we use common procedure, 

when the matrix, whose rows are the given vectors, is reduced to a row echelon 

form: 














































2110

3001
~

2110

2110

1111

~

3001

1221

1111

A . 

Hence, the matrix rank is 2RgA = . Also, we choose the vectors 

 3;0;0;11 g  and  2;1;1;02 g  as basis vectors.  

Then, the orthogonal projection of the vector x  onto the subspace L is  

𝑦→ = 𝑝𝑟𝑜𝑗𝐿 𝑥
→ = 𝛼1 ⋅ 𝑔1

→ + 𝛼2 ⋅ 𝑔2
→ 

. 

Coefficients 1α  and 2α  satisfy the system: 

  0, igz , where yxz  , i.e.    ii gxgy ,,  , 

or 
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     
     









2222211

1122111

,,,

,,,

gxgggg

gxgggg




 

Finding the scalar products,  

  10, 11 gg ,   6, 21 gg ,   6, 22 gg . 

  16, 1 gx ,   12, 2 gx  

allow us to form the system of equations 









1266

16610

21

21




 










2

835

21

21




 

 








8325

2

22

21




 










22

2

2

21




 










1

1

2

1




 

Hence, 

     5,1,1,12,1,1,03,0,0,1  yxprojL


, 

and  

     1,2,0,35,1,1,14,3,1,4  yxzxproj
L


. 

 

Example 4.9. Find the orthogonal projection y  and 𝑝𝑟𝑜𝑗𝐿⊥ 𝑥
→ = 𝑧→  of the 

vector  3,0,0,1x  onto the subspace L, which is given by SLAE: 















032

0

02

4321

432

421







 

To find the basis of L, we need to define the FSS of the given system. 

Reducing the coefficient matrix to the row echelon form, we can find the rank: 















 















 







































1200

1110

1101

~

2400

1110

1101

~

3150

1110

2011

~

1132

1110

2011
21

325

rr

rr
A

3Rg =A . 
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Hence, 















431

432

43 02







  















3331

3332

34

32

2

2







 

Then, assigning a value 1 to the free unknown 3 , we can calculate  

 1  2  3  4  

1a  3 1 1 -2 

So, 1ay  . 

Taking into account that    11 ,, axay  , we get: 

  634119  ; 

315  ; 
5

1

15

3



 . 

Therefore, 

 2,1,1,3
5

1
 yxprojL


,  

and 

    









5

13
,

5

1
,

5

1
,

5

8
2,1,1,3

5

1
3,0,0,1yxzxproj

L


. 

 

 4.8. Orthogonal projection and minimization problem 

 Let us now apply the scalar product to the following minimization 

problem: Given a subspace EL   and an arbitrary vector Ex , we have to 

find  among all vectors Ly  such one that is closest to x , i.e. to make the 

distance between the vectors x and y  as small as possible: min yx .  

 The next proposition shows that an orthogonal projection x  onto the 

subspace L, i.e. 𝑦→ = 𝑝𝑟𝑜𝑗𝐿 𝑥
→

 is the closest point in L to the vector x  and that 
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this minimum is, in fact, unique. 

Let 𝑦→ = 𝑝𝑟𝑜𝑗𝐿 𝑥
→

, and 1y  is any vector in L. Then,  

   11 yyyxyx      (4.35) 

  Lyy  1 , and as 𝑧→ = 𝑥→ − 𝑦→ = 𝑝𝑟𝑜𝑗𝐿⊥ 𝑥
→

, we have that    Lyx , as a 

result this vector   Lyx   and, also,    1yyyx  . Thereby, 

     0, 1  yyyx . 

Taking scalar products of each side of the equality (4.35) with respect to 

the vector 1yx  , we get: 

              21

2

11

2

1 , yyyxyyyxyyyxyx   

or 

2

1

22

1 yyyxyx   

 As 1yy  , we can claim that 0
2

1  yy . 

Hence, 

22

1 yxyx  . 

That is, the distance between the vectors x and y  yx   is smallest, if 𝑦→ =

𝑝𝑟𝑜𝑗𝐿 𝑥
→

. This fact is obvious in space 3R , as seen in Fig. 4.2. 

z  

y  

1y  

x  

Fig. 4.2 
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Chapter 5. LINEAR OPERATORS IN EUCLIDEAN SPACE 

 5.1. Adjoint Operator 

Definition. An operator 𝑨∗is called adjoint to an operator in space En if the 

following condition is satisfied: 

(𝑨 𝑥→ , 𝑦→) = (𝑥→ ,𝑨∗ 𝑦→).     (5.1) 

for any 𝑥→ and 𝑦→ of this space En. 

 

 Note. Adjoint operators mimic the behavior of the transpose matrix on real 

Euclidean space. Recall that the transpose AT of a real 𝑚 ×  𝑛 matrix A satisfies 

(𝐴 𝑥, 𝑦)  =  (𝑥, 𝐴𝑇𝑦) 

for all 𝑥 ∈  𝑅𝑛and 𝑦 ∈  𝑅𝑚, where (∗,∗) is the Euclidean scalar product, i.e. the 

dot product. 

 Indeed, in the matrix form, the scalar product of two vectors in a given 

basis can be written using the Gram’s matrix Г as follows: 

(𝑥→ , 𝑦→) = 𝑋𝑇Г𝑌. 

With this relation, one can rewrite (5.1) in the form: 

(𝐴𝑋)𝑇Г𝑌 = 𝑋𝑇Г𝐴∗𝑌 

In accordance with the properties of the transpose operation we have  

𝑋𝑇𝐴𝑇Г𝑌 = 𝑋𝑇Г𝐴∗𝑌 

That is, the following equality between the matrices occurs 

𝐴𝑇Г = Г𝐴∗, 

Hence, 

𝐴∗ = Г−1𝐴𝑇Г     (5.2) 

In the case of an orthonormal basis in real Euclidean space, we have that the 

Gram matrix coincides with an identity matrix, i.e. Г =  𝐼, then (5.2) takes the 

form: 

𝐴∗ = 𝐴Т      (5.3) 
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Theorem. For any linear operator 𝑨 in the space En there exists an adjoint 

operator 𝑨∗, and this operator is unique.  

The adjoint operator 𝑨∗ is linear, and its matrix 𝐴∗ = {𝑎𝑖𝑘
∗ }  with respect to 

any orthonormal basis can be deduced from the matrix of the operator 𝑨 given 

in the same basis according to the rule: 

1. 𝐴∗ = 𝐴̅Т or 𝑎𝑖𝑘
∗ = 𝑎̄𝑘𝑖 (the conjugate transpose in the case of a complex 

space); 

2. 𝐴∗ = 𝐴Т or 𝑎𝑖𝑘
∗ = 𝑎𝑘𝑖 (the transpose in the case of a real space). 

Proof. We prove this fact for a real space. Let us choose an orthonormal 

basis {𝑔𝑖}𝑖=1,𝑛  in the space En, where an linear operator 𝑨  is given, and let 

{𝜉𝑖}𝑖=1,𝑛  and {𝜂𝑖}𝑖=1,𝑛 be the coordinates of the vectors 𝑥→and 𝑦→ in this basis.  

Making the scalar product of the vectors 𝑨 𝑥→ and 𝑦→, we get 

(𝑨 𝑥→ , 𝑦→) = (𝑨∑𝜉𝑖 𝑔𝑖
→ 

𝑛

𝑖=1

,∑𝜂𝑗 𝑔𝑗
→ 

𝑛

𝑗=1

) =∑∑𝜉𝑖𝜂𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(𝑨𝑔𝑖
→ , 𝑔𝑗
→ ) = 

=∑∑𝜉𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝜂𝑗(𝑎1𝑖 𝑔1
→ + 𝑎2𝑖 𝑔2

→ +⋯+ 𝑎𝑛𝑖 𝑔𝑛
→ , 𝑔𝑗

→ ) =∑∑𝜉𝑖𝜂𝑗𝑎𝑗𝑖

𝑛

𝑗=1

𝑛

𝑖=1

 

Here 𝐴 = {𝑎𝑖𝑗}𝑖=1,𝑛
𝑗=1,𝑛

  is the matrix representation of the operator 𝑨  in the 

orthonormal basis {𝑔𝑖}𝑖=1,𝑛. Also, we transpose this matrix as 𝐴𝑇 = {𝑎𝑗𝑖}𝑖=1,𝑛
𝑗=1,𝑛

. 

One can prove that the matrix 𝐴𝑇 corresponds to a linear operator 𝑨𝑇 that 

is an adjoint of  𝑨, i.e. 𝑨𝑇 = 𝑨∗. For this purpose, let us consider the dot product: 

(𝑥→ , 𝑨𝑇 𝑦→) = (∑𝜉𝑖 𝑔𝑖 ,
→ ∑𝜂𝑗𝑨

𝑇 𝑔𝑖
→ 

𝑛

𝑗=1

𝑛

𝑖=1

) = 

=∑∑𝜉𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝜂𝑗(𝑔𝑖
→ , 𝑎𝑗1 𝑔1

→ + 𝑎𝑗2 𝑔2
→ +⋯+ 𝑎𝑗𝑛 𝑔𝑛

→ ) = 
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=∑∑𝜉𝑖𝜂𝑗(𝑔𝑖 ,
→ 𝑎𝑗𝑖 𝑔𝑖

→ )

𝑛

𝑗=1

𝑛

𝑖=1

=∑∑𝜉𝑖𝜂𝑗𝑎𝑗𝑖

𝑛

𝑗=1

𝑛

𝑖=1

 

So, (𝑨 𝑥→ , 𝑦→) = (𝑥→ ,𝑨𝑇 𝑦→) ⇒ 𝑨𝑇 = 𝑨∗.  

 

 Remark. It should be noted that this theorem is not valid if a space has 

infinite dimension. It is also emphasized that no such simple relationship exists 

between the matrices representing А and А* if the basis is not orthonormal. 

Otherwise, if the basis is not orthonormal, the matrix of an adjoint operator is 

defined as  

1. 𝐴∗ = Г−1𝐴̅ТГ (in the case of a complex space); 

2. 𝐴∗ = Г−1𝐴ТГ (in the case of a real space). 

Thus, it is seen one useful property of orthonormal bases.  

 

 Properties of an adjoint operator 

Let En be a real Euclidean space, then 

1)  for given an identity operator, we have 

𝑰∗ = 𝑰 

According to the properties of identity matrix, the scalar product of appropriate 

vectors leads us to the following result:  

(𝑰 𝑥→ , 𝑦→) = (𝑥⃗, 𝑦⃗) = (𝑥⃗, 𝑰 𝑦→) ⇒ 𝑰 = 𝑰∗ 

2) An adjoint of an adjoint linear operator is the linear operator itself 

(𝑨∗)∗ = 𝑨 

Indeed, the scalar product of appropriate vectors gives us 

(𝑨 𝑥→ , 𝑦→) = (𝑥→ , 𝑨∗ 𝑦→) = (𝑨∗ 𝑦→ , 𝑥→) = (𝑦→ , (𝑨∗)∗ 𝑥→) = ((𝑨∗)∗ 𝑥→ , 𝑦→) 

Equating both sides of the equality, we have А = (𝑨∗)∗ 

It follows from this fact that twice transposed matrix coincides with the 

matrix itself, i.e. (𝐴𝑇)𝑇 = 𝐴 
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3) (𝑨 + 𝑩)∗ = 𝑨∗ + 𝑩∗ 

Indeed, using the properties of the scalar product of appropriate vectors, we 

obtain 

 (𝑥→ , (𝑨 + 𝑩)∗ 𝑦→) = ((𝑨 + 𝑩) 𝑥→ , 𝑦→) = (𝑨 𝑥→ , 𝑦→) + (𝑩 𝑥→ , 𝑦→) = 

 = (𝑥,→𝑨∗ 𝑦→) + (𝑥,→𝑩∗ 𝑦→) = (𝑥→ ,𝑨∗ 𝑦→ + 𝑩∗ 𝑦→) = (𝑥→ , (𝑨∗ + 𝑩∗) 𝑦→) 

 Hence, the matrix transposed of the sum of two matrices is equal to the 

sum of their transposed matrices, i.e. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 

4) (𝑨 ⋅ 𝑩)∗ = 𝑨∗ ⋅ 𝑩∗ 

Indeed, by making the scalar product of appropriate vectors and 

performing transformations, we have 

(𝑥→ , (𝑨 ⋅ 𝑩)∗ 𝑦→) = ((𝑨 ⋅ 𝑩) 𝑥→ , 𝑦→) = (𝑨(𝑩 𝑥→), 𝑦→) = (𝑩 𝑥→ ,𝑨∗𝑦̃) =

(𝑥,→𝑩∗(𝑨∗ 𝑦→)) = (𝑥,→𝑩∗𝑨∗ 𝑦→),⇒ (𝑨 ⋅ 𝑩)∗ = 𝑨∗ ⋅ 𝑩∗ 

Therefore, the matrix transposed of a product of two matrices is equal to 

the product of the transposed matrices in reverse order: (𝐴𝐵)𝑇 = 𝐵𝑇 ⋅ 𝐴𝑇. 

5) If a linear operator 𝑨−1 inverse to a linear operator 𝑨 exists, then (𝑨−1)∗ =

(𝑨∗)−1. 

Indeed, as 𝑨 ⋅ 𝑨−1 = 𝑰, in turn, as 𝑰 = 𝑰∗ and  

𝑰∗ = (𝑨 ⋅ 𝑨−1)∗ = (𝑨−1)∗ ⋅ 𝑨∗ = 𝑰. 

We have (𝑨−1)∗ ⋅ 𝑨∗ = 𝑰, that means the fact  

(𝑨−1)∗ = (𝑨∗)−1. 

Therefore, the following statement is true for matrices (𝐴−1)𝑇 = (𝐴𝑇)−1 

 

Example 5.1. A linear operator 𝑨 in the basis 𝑎1
→ = (3,−1), 𝑎2

→ = (2,1) 

has a matrix 𝐴𝑎 = (
0 −1
0 0

). Find the matrix of the adjoint operator 𝑨𝑒
∗  in the 

natural basis and 𝑨𝑒
∗  in the current basis. 

Solution. Construct a matrix A in the orthonormal basis, using the formula 
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𝐴𝑒 = 𝐶 ⋅ 𝐴𝑎 ⋅ 𝐶
−1 where C is the matrix of the transition from the basis {𝑒𝑖

→}
𝑖=1,2

 

to {𝑎𝑖
→ }

𝑖=1,2
. This transition matrix has a form: 

𝑎1
→ = 3 𝑒1

→ − 𝑒2

𝑎2
→ = 2𝑒1

→ + 𝑒2
} ⇒ 𝐶 = |

3 2
−1 1

|, 

then 

𝐶−1 =
1

5
|
1 −2
1 3

|, 

𝐴𝑒 =
1

5
(
3 2
−1 1

) ⋅ (
0 −1
0 0

) ⋅ (
1 −2
1 3

) =
1

5
(
3 2
−1 1

) ⋅ (
−1 −3
0 0

)

=
1

5
(
−3 −9
1 3

) 

𝐴𝑒
∗ =

1

5
(
−3 1
−9 3

) 

Let us now construct the matrix 𝐴𝑎
∗  using the formula: 

𝐴𝑒
∗ = 𝐶 ⋅ 𝐴𝑎

∗ ⋅ 𝐶−1 ⇒ 𝐴𝑎
∗ = 𝐶−1 ⋅ 𝐴𝑒

∗ ⋅ 𝐶 

𝐴𝑎
∗ =

1

5
(
1 −2
1 3

) ⋅
1

5
(
−3 1
−9 3

) ⋅ (
3 2
−1 1

) =
1

25
(
1 −2
1 3

) ⋅ (
−10 −5
−30 −15

) = 

= −
1

5
(
1 −2
1 3

) (
2 1
6 3

) = 

= −
1

5
(
−10 −5
20 10

) = (
2 1
−4 −2

). 

 

 5.2. Unitary and Orthogonal Operators 

Definition: An operator 𝑼 on a Euclidean space En is called a unitary 

operator (the underlying field is complex (Hilbert space)) or orthogonal 

operator (the underlying field is real) if the operator maps orthonormal bases to 

orthonormal bases. 

One can demonstrate that if U is a unitary (orthogonal) operator in a 

space En and the vectors {𝑔𝑖
→ }

𝑖=1,𝑛
 form an orthonormal basis in this space, i.e. 
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(𝑔𝑟
→ , 𝑔𝑠
→ ) = {

1, 𝑠 = 𝑟
0, 𝑠 ≠ 𝑟

, then the vectors {𝑼𝑔𝑖
→ }

𝑖=1,𝑛
 form an orthonormal basis as 

well, that is 

(𝑼𝑔𝑟
→ ,𝑼𝑔𝑠

→ ) = {
1, 𝑠 = 𝑟
0, 𝑠 ≠ 𝑟

   (5.4) 

Let 𝑈 = {𝑢ik} represent the matrix of the operator 𝑼 in the basis {𝑔𝑖
→ }

𝑖=1,𝑛
. 

Then, 

𝑼𝑔𝑟
→ =∑𝑢𝑖𝑟 𝑔𝑖

→ ,

𝑛

𝑖=1

      (𝑟 = 1, 𝑛) 

Similarly 

𝑼𝑔𝑠
→ =∑𝑢𝑗𝑠 𝑔𝑗

→ 
𝑛

𝑗=1

,        (𝑠 = 1, 𝑛) 

Then, since given the vectors {𝑔𝑖
→ }

𝑖=1,𝑛
 as an orthonormal basis, we obtain 

(𝑼𝑔𝑟
→ ,𝑼𝑔𝑠

→ ) = (∑𝑢𝑖𝑟 𝑔𝑖
→ 

𝑛

𝑖=1

,∑𝑢𝑗𝑠 𝑔𝑗
→ 

𝑛

𝑗=1

) =∑𝑢𝑖𝑟𝑢̅𝑖𝑠

𝑛

𝑖=1

. 

Since 𝑢̅𝑖𝑠 are either complex conjugate or transpose values, the last equality 

takes the form 

∑𝑢𝑖𝑟𝑢̅𝑖𝑠

𝑛

𝑖=1

= {
0, 𝑠 ≠ 𝑟
1, 𝑠 = 𝑟

 

The expansion of this sum results in two equations: 

𝑢1𝑟 ⋅ 𝑢1𝑠 + 𝑢2𝑟 ⋅ 𝑢2𝑠 +⋯+ 𝑢𝑛𝑟 ⋅ 𝑢𝑛𝑠 = 0, (𝑟 ≠ 𝑠) 

𝑢1𝑟
2 + 𝑢2𝑟

2 +⋯+ 𝑢𝑛𝑟
2 = 1, (𝑟 = 𝑠)   (5.5) 

Thus, it has been proven that 

(𝑼𝑔𝑟
→ ,𝑼𝑔𝑠

→ ) = (𝑔𝑟
→ , 𝑔𝑠
→ ) = {

0, 𝑠 ≠ 𝑟
1, 𝑠 = 𝑟

= 𝛿𝑟𝑠  

 

The next theorem gives alternative characterizations of these operators. 
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Theorem 1. The following conditions on a unitary (orthogonal) operator 

U are equivalent: 

(i) if 𝑼𝑼∗ = 𝑼∗𝑼 = 𝑰, then 𝑼∗ coincides with the inverse of the operator 

𝑼, i.e. 

𝑼∗  =  𝑼−1     (5.6) 

(ii) U preserves scalar products, that is, for every 𝑥⃗, 𝑦⃗ ∈ 𝐸𝑛, the equality 

takes place: 

(𝑼𝑥⃗, 𝑼𝑦⃗) = (𝑥⃗, 𝑦⃗)     (5.7) 

(iii) U preserves norm (length), that is, for every 𝑥⃗ ∈ 𝐸𝑛, 

‖𝑼𝑥⃗‖ = ‖𝑥⃗‖     (5.8) 

 

 (i) Proof. 

(𝑼 𝑥→ ,𝑼 𝑦→) = (𝑥→ , 𝑦→) .(𝑥→ ,𝑼∗𝑼 𝑦→) = (𝑥→ , 𝑰 𝑦→) , ∀ 𝑥→ , 𝑦→ 

Then, we have that 

𝑼∗𝑼 = 𝑰 .𝑼∗ = 𝑼−1  

 (ii) Proof. Indeed, let {𝑒𝑖
→}

𝑖=1,𝑛
 be an orthonormal basis. The operator action 

gives 𝑼 𝑒𝑖
→ = 𝑒𝑖

→′
, where {𝑒𝑖

→′}
𝑖=1,𝑛

 is also an orthonormal basis. Take any two 

elements 𝑥→ = ∑ 𝜉𝑖 𝑒𝑖
→𝑛

𝑖=1  and 𝑦→ = ∑ 𝜂𝑗 𝑒𝑗
→𝑛

𝑗=1 . Then: 

(𝑼 𝑥→ ,𝑼 𝑦→) =∑∑𝜉𝑖𝜂𝑗(𝑼 𝑒𝑖
→ ,𝑼 𝑒𝑗

→)

𝑛

𝑗=1

𝑛

𝑖=1

=∑∑𝜉𝑖𝜂𝑗 (𝑒𝑖
→′
, 𝑒𝑗
→′
)

𝑛

𝑗=1

𝑛

𝑖=1

= 

= ∑ ∑ 𝜉𝑖𝜂𝑗
𝑛
𝑗=1

𝑛
𝑖=1 = (𝑥→ , 𝑦→).  

 (iii) Proof. It follows from the previous proof, considering the scalar 

product as a multiplication of the vector 𝑼 𝑥→ by itself. 

 

 By the Theorem 1, we obtain the following results. 

 Theorem 2. A complex matrix U represents a unitary operator U (relative 
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to an orthonormal basis) if and only if 𝑈∗ = 𝑈−1.  

 Theorem 3. A real matrix U represents an orthogonal operator U (relative 

to an orthonormal basis) if and only if 𝑈𝑇 = 𝑈−1. 

 

The above theorems motivate the following definitions: 

 Definition: A complex matrix U for which 𝑈∗ = 𝑈−1 is called a unitary 

matrix. 

In other words, an invertible complex square matrix U is unitary if its conjugate 

transpose U* is also its inverse, that is, if 𝑈∗ = 𝑈−1. 

 Definition: A real matrix U for which 𝑈𝑇 = 𝑈−1 is called an orthogonal 

matrix.  

 

 Note: The entries of the unitary (orthogonal) matrix of a unitary (orthogonal) 

operator U 

𝑈 = (

𝑢11 𝑢12 … 𝑢1𝑛
𝑢21 𝑢22 … 𝑢2𝑛
… … … …
𝑢𝑛1 𝑢𝑛2 … 𝑢𝑛𝑛

) 

satisfy the properties (5.5).  

 That is, the sum of the products of the elements of any two columns is 

equal to 0, but multiplication of the column by itself gives 1.  

 Thus, if the columns of the unitary (orthogonal) matrix are considered as 

vectors, then these vectors will form an orthonormal basis. 

 

Remark. If 𝑼 is an orthogonal operator, then 𝑼∗ will also be an orthogonal 

operator. 

Indeed, 

(𝑼∗ 𝑥→ ,𝑼∗ 𝑦→) = (𝑥→ ,𝑼∗∗(𝑼∗𝑦)) = (𝑥→ ,𝑼𝑼−1 𝑦→) = (𝑥→ , 𝑰 𝑦→) = (𝑥→ , 𝑦→) . 

 Also, in the case of an orthogonal matrix, the columns of the matrix 𝑈𝑇 (i.e. 
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rows of the matrix U) also form an orthonormal system of vectors, i.e. 

∑𝑢𝑖𝑠

𝑛

𝑠=1

⋅ 𝑢𝑘𝑠 = 0 , 𝑖 ≠ 𝑘 , 

∑𝑢𝑖𝑘
2

𝑛

𝑘=1

= 1,      ∀𝑖 = 1, 𝑛̅̅ ̅̅̅. 

Thus, the matrix of an orthogonal operator in any orthonormal basis is 

orthogonal. 

 

An example of the orthogonal matrix is the standard matrix for the 

counterclockwise rotation of R2 through an angle 𝜃, i.e. 

𝐴 = (
cos θ −sin θ
sin θ cos θ

) 

This matrix is orthogonal for all choices of 𝜃 since 

𝐴𝑇𝐴 = (
cos θ sin θ
−sin θ cos θ

) (
cos θ −sin θ
sin θ cos θ

) = (
1 0
0 1

) = 𝐼 

 Also, the reflection matrix that maps each point into its symmetric image 

about the x-axis is orthogonal.  

𝐴 = (
1 0
0 −1

) 

Indeed, 

𝐴𝑇𝐴 = (
1 0
0 −1

) (
1 0
0 −1

) = (
1 0
0 1

) = 𝐼 

 

The determinant of an orthogonal matrix is equal to ±1.  

Indeed, it follows from equality U∙U𝑇 = 𝐼  that 𝑑𝑒𝑡(𝑈 ∙ 𝑈𝑇) = 𝑑𝑒𝑡 𝑈 ⋅

𝑑𝑒𝑡 𝑈𝑇 = 𝑑𝑒𝑡 𝐼 = 1 . Since det 𝑈 = det 𝑈𝑇 , then we have (det 𝑈)2 = 1  as a 

result, det 𝑈 = ±1 

 

Continuing the previous examples, one can show that the determinants 

associated with those matrices are 
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det 𝐴 = |
cos θ −sin θ
sin θ cos θ

| = cos2 θ + sin2 θ = +1 

det 𝐴 = |
1 0
0 −1

| = −1 − 0 = −1 

 

Theorem. The eigenvalues of an orthogonal operator are equal to ±1 

Proof. Let 𝑥→ be an eigenvector, and  is the corresponding eigenvalue of 

the orthogonal operator U. Then 

(𝑥→ , 𝑥→) = (𝑼 𝑥→ ,𝑼 𝑥→) = (𝜆 𝑥→ , 𝜆 𝑥→) = |𝜆|2(𝑥→ , 𝑥→) 

Since (𝑥→ , 𝑥→) ≠ 0 , it follows from the last equality (𝑥→ , 𝑥→) =

|𝜆|2(𝑥→ , 𝑥→) that |𝜆|2 = 1 ⇒ 𝜆 = ±1.  

 

Remark. The matrix of transition from one orthonormal basis to another 

orthonormal basis is orthogonal. 

Indeed, let {𝑒𝑖}𝑖=1,𝑛 and {𝑒𝑖
∗}𝑖=1,𝑛 be two orthonormal basis. Then 

{
 
 

 
 𝑒1

∗→ = 𝑎11 𝑒
→
1 + 𝑎21 𝑒2

→ +⋯+ 𝑎𝑛1 𝑒
→
𝑛

𝑒2
∗→ = 𝑎12𝑒1 + 𝑎22 𝑒2

→ +⋯+ 𝑎𝑛2 𝑒𝑛
→ 

……… .

𝑒𝑛
→ = 𝑎1𝑛 𝑒1

→ + 𝑎2𝑛 𝑒2
→ +⋯+ 𝑎𝑛𝑛 𝑒𝑛

→ 

. 

The transition matrix has the following form: 

𝑇 = (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

) 

Let us consider scalar products (𝑒𝑖
∗, 𝑒𝑘

∗). For example, (𝑒1
∗, 𝑒2

∗) = 0 written 

in the expanded form, leads to 

𝑎11 ⋅ 𝑎12 + 𝑎21 ⋅ 𝑎22 +⋯+ 𝑎𝑛1 ⋅ 𝑎𝑛2 = 0, 

and the expansion of (𝑒1
∗, 𝑒1

∗) = 1 gives   

𝑎11
2 + 𝑎21

2 +⋯+ 𝑎𝑛1
2 = 1 
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Similarly, for any 𝑒𝑖
∗→  and 𝑒𝑘

∗⃗⃗⃗⃗⃗, i.e. (𝑒𝑖
∗→ , 𝑒𝑘

∗→ ) at 𝑖 ≠ 𝑘, we get 

∑ 𝑎𝑖𝑗
𝑛
𝑗=1 ⋅ 𝑎𝑘𝑗 = 0,  

and (𝑒𝑖
∗→ , 𝑒𝑘

∗→ ) at 𝑖 = 𝑘 gives 

∑ 𝑎𝑖𝑗
2𝑛

𝑗=1 = 1  

Therefore, the matrix T is orthogonal.  

 

 5.3. Self-adjoint Operators 

Definition. An operator 𝑨 that coincides with its adjoint, i.e. 𝑨∗ = 𝑨 is 

called a self-adjoint (or hermitian) operator. 

If 𝑨 is a self-adjoint operator, then ∀ 𝑥→ , 𝑦→ ∈ 𝐸𝑛  the following equality 

holds: 

(𝑨 𝑥→ , 𝑦→) = (𝑥→ ,𝑨 𝑦→)     (5.9) 

Let 𝐴 = [𝑎𝑖𝑘]𝑖,𝑘=1,𝑛  be a matrix of a self-adjoint operator in an 

orthonormal basis. Then,  

1. if a space is over the field of real numbers, the matrix satisfies 𝐴 = 𝐴𝑇 

or 𝑎𝑖𝑘 = 𝑎𝑘𝑖. 

This matrix is called symmetric.  

2. if a space is over the field of complex numbers, the matrix is a 

conjugate transpose of A, i.e. 𝐴 = 𝐴∗ or 𝑎𝑖𝑘 = 𝑎̅𝑘𝑖. 

This matrix is called Hermitian. 

 

The following properties of a self-adjoint operator are important: 

Theorem 1. All the roots of the characteristic polynomial of a self-adjoint 

operator 𝑨 are real, i.e. the eigenvalues of a self-adjoint operator are real. 

Proof. Let  be an eigenvalue of a self-adjoint operator 𝑨 and 𝑥→ be the 

corresponding eigenvector, i.e. 



119 
 

𝑨 𝑥→ = 𝜆 𝑥→,  where 𝑥→ ≠ 0. 

Because (𝑨 𝑥→ , 𝑥→) = (𝑥→ , 𝑨 𝑥→) , then (𝜆 𝑥→ , 𝑥→) = 𝜆̄(𝑥→ , 𝑥→) . Given that 

(𝑥→ , 𝑥→) ≠ 0 ⇒ 𝜆 = 𝜆̄, i.e.  is a real number.  

 

Theorem 2. Eigenvectors of a self-adjoint operator 𝑨, which correspond 

to distinct eigenvalues, are orthogonal.  

Proof. Let 𝜆1 and 𝜆2 be distinct eigenvalues of a self-adjoint operator 𝑨, 

and 𝑥→1 , 𝑥
→
2 are the corresponding eigenvectors. 

Since (𝑨 𝑥1
→ , 𝑥2
→ ) = (𝑥1

→ , 𝑨 𝑥2
→ ) and 𝑨 𝑥→1 = 𝜆1 𝑥

→
1 , 𝑨 𝑥

→
2 = 𝜆2 𝑥

→
2, then  

𝜆1(𝑥
→
1 , 𝑥
→
2) = 𝜆2(𝑥

→
1 , 𝑥
→
2),  (𝜆1 − 𝜆2)(𝑥

→
1 , 𝑥
→
2) = 0, 

It follows from this equality that since 𝜆1 ≠ 𝜆2, we have (𝑥→1 , 𝑥
→
2) = 0.  

That is, 𝑥→1 and 𝑥→2 are the orthogonal vectors.  

 

Theorem 3. A self-adjoint operator has a simple structure. (Without 

proof). 

 

Theorem 4. For any self-adjoint operator in Euclidean space, there is an 

orthonormal basis composed of the eigenvectors of this operator. 

Proof. Let an eigenvalue  of this operator have a multiplicity of "k". 

Since 𝑨 is an operator of simple structure, this eigenvalue corresponds to "k" 

linearly independent eigenvectors. These vectors form a subspace of dimension 

"k". We choose an orthogonal basis in this subspace. Eigenvectors corresponding 

to other eigenvalues will be orthogonal to this subspace. Doing the same with 

the vectors corresponding to other eigenvalues accounting for their multiplicity, 

we obtain an orthonormal basis of the whole space.  

 

Theorem 5. A matrix of a self-adjoint operator in some orthonormal basis 
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is represented by a diagonal matrix relative to this basis (In other words, a 

matrix of a self-adjoint operator is diagonalizable) 

Proof. Let 𝜆1  be one of eigenvalue of a self-adjoint operator 𝑨 . By 

Theorem 1, 𝜆1 is a real number. Let 𝑒→1 be an eigenvector corresponding to this 

eigenvalue, i.e. 𝑨 𝑒→1 = 𝜆1 𝑒
→
1. The vector 𝑒→1 can be considered as a unit length 

vector, otherwise it could be replaced by a unit eigenvector  
𝑒→1

‖𝑒→1‖
 associated with 

the same eigenvalue. 

We denote as 𝑅1 a one-dimensional subspace generated by the vector 𝑒→1. 

Its orthogonal complement 𝑅1
⊥ will be invariant with respect to the operator 𝑨. 

Recall that subspace 𝑅1 ⊂ 𝑅 is called invariant with respect to a linear 

operator 𝑨 if the image 𝑨 𝑥→ of each vector 𝑥→ ∈ 𝑅1 also belongs 𝑅1, i.e., if 𝑥→ ∈

𝑅1 𝑨 𝑥→ ∈ 𝑅1. The operator 𝑨 remains, of course, to be self-adjoint. 

Let 𝜆2 be another real eigenvalue of the operator 𝑨 in the subspace 𝑅1
⊥. 

The corresponding eigenvector is denoted by 𝑒2
→ 

, then 

𝑨 𝑒→2 = 𝜆2 𝑒
→
2. 

Let 𝑅2 be an invariant subspace generated by the vectors 𝑒→1 and 𝑒2
→ 

, then 

the subspace 𝑅2
⊥ will also be invariant relatively 𝑨. Continue this construction, 

we find n pairwise orthogonal, and hence linearly independent unit eigenvectors 

of the operator 𝑨. In the basis consisting of these vectors, the matrix A of the 

operator 𝑨 is reduced to a diagonal form: 

𝐴 = (

𝜆1 0 … 0
0 𝜆2 … 0
… … … …
0 0 … 𝜆𝑛

).  

 

 Algorithm for constructing an orthonormal basis of a self-adjoint operator 

1. Compose the characteristic equation of the linear operator det(𝐴 − 𝜆𝐼)  =

 0. 
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2. Find all eigenvalues. 

3. Find associated eigenvectors. 

4. With obtained eigenvectors, construct the orthonormal basis. 

 

Example 5.2. Construct an orthonormal basis using the eigenvectors of a 

linear operator, which is given by a matrix 𝐴𝑓 in an orthonormal basis of vectors 

𝑓1
→
, 𝑓2
→ 
, 𝑓3
→ 

, as  

𝐴𝑓 =
1

3
(
2 2 −1
2 −1 2
−1 2 2

). 

Compose the transition matrix to a new basis and the matrix of the operator 𝐴𝑒 

in a new basis. 

Solution. Find the eigenvalues and eigenvectors of the operator 𝑨. For this 

purpose, we write a characteristic equation: 𝑑𝑒𝑡(𝐴𝑓 − 𝜆𝐼) = 0, i.e. 

|

2/3 − 𝜆 2/3 −1/3
2/3 −1/3 − 𝜆 2/3
−1/3 2/3 2/3 − 𝜆

| = 0,  −𝜆3 + 𝜆2 + 𝜆 − 1 = 0, 

Solving the equation, we get the eigenvalues: 1= -1,2=3= 1, which are distinct 

reals. Making the solution of the system of equations (𝐴 − 𝜆𝐼) ⋅ 𝑋 = 0 for each 

eigenvalue, we find eigenvectors associated with it: 

1= -1, then 

(

5/3 2/3 −1/3
2/3 2/3 2/3
−1/3 2/3 5/3

)(

𝑥1
𝑥2
𝑥3
) = (

0
0
0
). 

Solving this system, we get the first eigenvector as 𝑒1
→ = (1;−2; 1). Then, 

2=3= 1 (the multiplicity is 2) 

(

−1/3 2/3 −1/3
2/3 −4/3 2/3
−1/3 2/3 −1/3

)(

𝑥1
𝑥2
𝑥3
) = (

0
0
0
). 

The solution of this system leads to the second and third eigenvectors in the 
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form: 𝑒2
→ = (2; 1; 0) and 𝑒3

→ = (−1; 0; 1), respectively.  

 The vectors 𝑒1
→ 

, 𝑒2
→ 

, and 𝑒3
→ 

 are linearly independent, i.e. they can form a 

basis. In doing so, one can see that pairwise orthogonal 𝑒1
→ ⊥ 𝑒2

→ 
 and 𝑒1

→ ⊥ 𝑒3
→ 

, but 

𝑒2
→   is not perpendicular to 𝑒3

→ 
. 

 Applying orthogonalzation procedure, we can construct an orthonormal 

basis: 

𝑔1
→ = 𝑒1

→ = (1;−2; 1), 

𝑔2
→ = 𝑒2

→ = (2; 1; 0), 

𝑔3
→ = 𝑒3

→ + 𝛼32 𝑔2
→ 

, where 𝛼32 = −
(𝑒3
→ ,𝑔2
→ )

(𝑔2
→ ,𝑔2
→ )

, then 𝑔3
→ = (−1/5; 2/5; 1/5)  

These vectors are orthogonal, but are not still normalized. Their lengths (norms) 

are 

‖𝑔1
→ ‖ = √6; ‖𝑔2

→ ‖ = √5; ‖𝑔3
→ ‖ = √6/5. 

Finally, we obtain an orthonormal basis formed by the vectors: 

𝑒1
→ ∗ =

√6

6
(1;−2; 1) 

𝑒2
→ ∗ =

√5

5
(2; 1; 0) 

𝑒3
→ ∗ =

√6

6
(−1; 2; 5) 

The transition matrix from the basis of vectors {𝑓𝑖
→
}
𝑖=1,2,3

 to the basis of 

eigenvectors {𝑒𝑖
→∗}

𝑖=1,2,3
 has a form: 

𝐶 =

(

 
 
 
 

√6

6

2√5

5
−
√6

6

−
2√6

6

√5

5

2√6

6

√6

6
0

5√6

6 )
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The matrix of the operator in the basis of eigenvectors takes the form: 

𝐴𝑒 = (
−1 0 0
0 1 0
0 0 1

) 

We can check this matrix by using the change of basis formula as follows:  

𝐴𝑒 = 𝐶
𝑇 ⋅ 𝐴 ⋅ 𝐶 = 

(

 
 
 
 

√6

6

2√5

5
−
√6

6

−
2√6

6

√5

5

2√6

6

√6

6
0

5√6

6 )

 
 
 
 

𝑇

∙
1

3
(
2 2 −1
2 −1 2
−1 2 2

) ∙

(

 
 
 
 

√6

6

2√5

5
−
√6

6

−
2√6

6

√5

5

2√6

6

√6

6
0

5√6

6 )

 
 
 
 

= 

(
−1 0 0
0 1 0
0 0 1

). 

 

 5.4. Spectral Decomposition of a Self-adjoint Operator 

Let’s consider a self-adjoint operator A in a Euclidean space 𝐸𝑛. Let 𝑒1, ..., 

𝑒𝑛 be an orthonormal basis in this space formed by eigenvectors of the operator 

A associated with eigenvalues 𝜆1 ,...,𝜆𝑛 . An arbitrary vector 𝑥⃗  ∈  𝐸𝑛  can be 

decomposed along the basis of vectors {𝑒𝑖}𝑖=1,𝑛̅̅̅̅̅.  

𝑥⃗ = 𝑥1𝑒1 + 𝑥2𝑒2 +⋯+ 𝑥𝑛𝑒𝑛 =∑𝑥𝑗𝑒𝑗

𝑛

𝑗=1

 

Making consequently scalar products of vectors 𝑥⃗ and 𝑒𝑗, where 𝑗 = 1,… , 𝑛, we 

can express that (𝑥⃗, 𝑒𝑗) = 𝑥𝑗. That is, one can write 

𝑥⃗ = ∑(𝑥⃗, 𝑒𝑗)𝑒𝑗

𝑛

𝑗=1

 

Since, for any basis vector 𝑒𝑗, 𝑗 = 1,… , 𝑛, the action of the operator is 𝑨(𝑒𝑗) =

𝜆𝑗𝑒𝑗 , where 𝜆𝑗  is an eigenvalue, then the image of the vector one can be 
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presented as follows: 

𝑨 𝑥→ = 𝑨(∑(𝑥⃗, 𝑒𝑗)𝑒𝑗

𝑛

𝑗=1

) =∑(𝑥⃗, 𝑒𝑗)𝑨𝑒𝑗

𝑛

𝑗=1

=∑𝜆𝑗(𝑥⃗, 𝑒𝑗)𝑒𝑗

𝑛

𝑗=1

 

The expression (𝑥⃗, 𝑒𝑗)𝑒𝑗  corresponds an orthogonal projection of the 

vector 𝑥⃗ onto a one-dimensional eigenspace of the operator A generated by the 

eigenvector 𝑒𝑗 .   Thus, we can introduce an orthogonal projection operator  

denoted as Pj such that  

𝑷𝑗𝑥⃗ = (𝑥⃗, 𝑒𝑗)𝑒𝑗. 

The operator is called a projector on the subspace generated by an eigenvector 

𝑒𝑗. 

 

 It follows from the feature of the scalar product that the projector is a self-

adjoint operator. Indeed,  

 (𝑷𝑗𝑥⃗, 𝑦⃗) = ((𝑥⃗, 𝑒𝑗)𝑒𝑗 , 𝑦⃗) = (𝑥⃗, 𝑒𝑗)(𝑒𝑗 , 𝑦⃗), and 

 (𝑥⃗, 𝑷𝑗𝑦⃗) = (𝑥⃗, (𝑦⃗, 𝑒𝑗)𝑒𝑗) = (𝑦⃗, 𝑒𝑗
̅̅ ̅̅ ̅)(𝑥⃗, 𝑒𝑗) = (𝑒𝑗 , 𝑦⃗)(𝑥⃗, 𝑒𝑗)  

Whence, 

(𝑷𝑗𝑥⃗, 𝑦⃗) = (𝑥⃗, 𝑷𝑗𝑦⃗) 

 

 Properties of the projector: 

1. 𝑷𝑗
2 = 𝑷𝑗  

2. 𝑷𝑗𝑷𝑘 = 0, for 𝑘 ≠ 𝑗 

 Indeed,  

 (𝑷𝑗𝑷𝑘)𝑥⃗ = 𝑷𝑗(𝑷𝑘𝑥⃗) = 𝑷𝑗(𝑥⃗, 𝑒𝑘)𝑒𝑘 = (𝑥⃗, 𝑒𝑘)𝑷𝑗𝑒𝑘 = (𝑥⃗, 𝑒𝑘)(𝑒𝑘 , 𝑒𝑗)𝑒𝑗 = 

= {
(𝑥⃗, 𝑒𝑗)𝑒𝑗 = 𝑷𝑗 𝑖𝑓 𝑘 = 𝑗

0 𝑖𝑓 𝑘 ≠ 𝑗
 

With the projector, the image of the vector one can be presented in the form: 
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𝑨 𝑥→ =∑𝜆𝑗𝑷𝑗𝑥⃗

𝑛

𝑗=1

 

 Therefore, we have 

𝑨 =∑𝜆𝑗𝑷𝑗

𝑛

𝑗=1

= 𝜆1𝑷1 + 𝜆2𝑷2 +⋯+ 𝑥𝑛𝑷𝑛 

   (5.10) 

This expansion (5.10) is called the spectral decomposition of a self-adjoint 

operator. 

 According to the feature of the projector, we have 

𝑨2 =∑𝜆𝑗
2𝑷𝑗

𝑛

𝑗=1

 

In general, for any number 𝑠 > 0, it is valid that 

𝑨𝑠 =∑𝜆𝑗
𝑠𝑷𝑗

𝑛

𝑗=1

 

 Let’s consider a polynomial of the i-th order with respect to the parameter 

𝜆, i.e. 𝑝(𝜆) = ∑ 𝑎𝑗𝜆
𝑗𝑛

𝑗=1 . Then, this polynomial with respect to the operator 𝑨 

has a form:  

𝑝(𝑨) =∑𝑎𝑗𝑨
𝑗

𝑛

𝑗=1

=∑𝑎𝑗∑𝜆𝑘
𝑗𝑷𝑘

𝑛

𝑘=1

𝑛

𝑗=1

=∑∑𝑎𝑗𝜆𝑘
𝑗𝑷𝑘

𝑛

𝑗=1

𝑛

𝑘=1

=∑𝑝(𝜆𝑘)𝑷𝑘

𝑛

𝑘=1

 

   (5.11) 

 

 Hamilton-Kelly theorem. If A is a self-adjoint operator and 𝑝(𝜆) =

det(𝑨 −  𝜆𝑰)  is a characteristic polynomial of this operator, then 

𝑝(𝑨)  =  0 

 Proof. If the operator A is a self-adjoint operator and 𝜆1 ,...,𝜆𝑛  are its 

eigenvalues, then they are roots of the characteristic equation, that is, 𝑝(𝜆𝑖) = 0. 
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Hence, it follows from (5.11) that 𝑝(𝑨)  =  0.  

 

 Considering a matrix representation of the operator, the theorem is valid for 

its matric. Herewith, the polynomial 𝑝(𝜆) of the variable λ is called annihilating 

polynomial of any square matrix A, and the polynomial with respect to the 

matrix takes the form similar to (5.11): 

𝑝(𝐴) =∑𝑝(𝜆𝑗)𝑷𝑗

𝑛

𝑗=1

. 

 Example 5.3. Given a matrix 𝐴 = (
1 1 1
1 1 1
1 1 1

), show that the characteristic 

equation of the matrix A is an annihilating polynomial of it.  

 Solution. Find the characteristic polynomial of the matrix: 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = |
1 − 𝜆 1 1
1 1 − 𝜆 1
1 1 1 − 𝜆

| = 3𝜆2 − 𝜆3. 

Substituting the matrix A in this expression instead of the variable λ, we 

obtain 

3(
1 1 1
1 1 1
1 1 1

)

2

− (
1 1 1
1 1 1
1 1 1

)

3

= 3(
3 3 3
3 3 3
3 3 3

) − (
9 9 9
9 9 9
9 9 9

) = О⃗⃗⃗ 

What was necessary to prove. 

 

 Positive Definite and Positive Operators 

 Definition: A self-adjoint operator A on a space 𝐸𝑛 is called positive (semi-

definite or non-negative) if (𝑨𝑥⃗, 𝑥⃗)  ≥ 0 for every 𝑥⃗ ∈ 𝐸𝑛. 

 Definition: A self-adjoint operator A on a space 𝐸𝑛  is called positive 

definite if (𝑨𝑥⃗, 𝑥⃗) >  0 for every  𝑥⃗ ∈ 𝐸𝑛 except for 𝑥⃗  =  0. 

 

 Properties of positive definite and positive operators 
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1. A self-adjoint operator A is positive if and only if all its eigenvalues are non-

negative (positive).

2. A self-adjoint operator A is positive definite if and only if all its eigenvalues 

are strictly positive.

3. A self-adjoint operator A is positive / positive definite if there exist 𝑨 = 𝑩2 for 

some self-adjoint / nonsingular self-adjoint operator B.

(i.e. every non-negative number has a unique non-negative square root)

4. A self-adjoint operator A is positive / positive definite if there exist 𝑨 = 𝑺∗𝑺 

for some operator / nonsingular operator S.

(It is an analogy with complex numbers, i.e. a complex number 𝑧 is 

nonnegative if and only if has the form 𝑧 = 𝑤̅𝑤 for some complex number 𝑤). 

Polar decomposition 

Theorem: Any operator A in a Euclidean space 𝐸𝑛  can be presented as

factorization of the form  

𝑨 =  𝑼 𝑷 

In the case of a real space, U is an orthogonal operator and P is a positive semi-

definite self-adjoint operator with symmetric matrix; or U is a unitary operator 

and P is a positive semi-definite self-adjoint operator with Hermitian matrix in 

the complex case. 

Proof: Let’s consider a positive self-adjoint operator 𝑫 such that 𝑫 =  𝑨∗𝑨

for some operator A. Given the self-adjoint operator D, there exists a self-adjoint 

operator P such that 𝑫 =  𝑷∗𝑷. Let’s compose an operator 𝑼 =  𝑨 𝑷−1. One

can show that this operator is unitary/orthogonal. Indeed, 

𝑼∗𝑼 =  (𝑨 𝑷−1)∗𝑨 𝑷−1 = (𝑷−1)∗ 𝑨∗𝑨⏟
𝑫

 𝑷−1 = (𝑷−1)∗𝑷∗𝑷⏟
𝑫

 𝑷−1 =

(𝑷 𝑷−1)∗𝑷 𝑷−1 = 𝑰∗𝑰 = 𝑰
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Thus, 𝑨 =  𝑼 𝑷.  

 

 Remark 1. If the operator A is nonsingular then P is either positive definite 

symmetric operator in the real case or positive definite Hermitian operator in the 

complex case. 

 Remark 2. The polar decomposition should be considered as an analogy 

between set of complex numbers C and a Euclidean space. First, we recall the 

polar form of a complex number 𝑧 = |𝑧|𝑒𝑖𝜃, where |𝑧| is the absolute value or 

modulus of 𝑧 and 𝑒𝑖𝜃 lies on the unit circle in 𝑅2. Then, in terms of an operator 

𝑨 ∈ 𝐸𝑛, a unitary/orthogonal operator U takes the role of 𝑒𝑖𝜃, and |𝑨| takes the 

role of the modulus. As seen, if 𝑨∗𝑨 ≥ 0  so that |𝑨| = (𝑨∗𝑨)
1
2⁄  exists and 

satisfies |𝑨| ≥ 0 as well, i.e. a positive self-adjoint operator 𝑷 = (𝑨∗𝑨)
1
2⁄ .  

 

 Intuitively, we can imagine this decomposition via the factorization of 

matricide associated with the operators, namely, if a real 𝑛 ×  𝑛 matrix A is 

interpreted as a linear transformation of n-dimensional space 𝑅𝑛, then, the polar 

decomposition separates it into a rotation or reflection U of the space 𝑅𝑛, and a 

scaling of the space along a set of n orthogonal axes by 𝑃. 
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Chapter 6. BILINEAR AND QUADRATIC FORMS 

 6.1. Basic concepts of bilinear functions (forms) 

In previous chapters, we have studied linear operators that map from the vector 

space into the vector space. The scalar field is the simplest of all nontrivial 

vector spaces. Given a vector space with a scalar field, then a linear mapping 

from the vector space into its scalar field is called a linear functional on a vector 

space. 

 

Definition. It is said that a linear functional 𝑓(𝑥⃗) is given on a vector space 

R if а vector 𝑥⃗R and a scalar 𝑓(𝑥⃗) the following conditions are fulfilled: 

𝑓(𝑥⃗  + 𝑦⃗)  =   𝑓(𝑥⃗)  +  𝑓(𝑦⃗), 

𝑓(𝛼𝑥⃗ )  =  𝛼 𝑓(𝑥⃗), 

where 𝑥⃗, 𝑦⃗ are arbitrary vectors of R, and α is any real number. 

 

 Example 6.1. Let R be the vector space of n-tuples, which we write as 

column vectors with coordinates {𝑥1, 𝑥2, … , 𝑥𝑛}. Then, any linear functional in 

the space of row vectors has the representation:  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 

 Historically, the formal expression on the right was termed a linear form. 

 

Definition. A function of two variables 𝛷(𝑥⃗, 𝑦⃗) given in a vector space R 

over is called a bilinear functional (form) if for a fixed 𝑥⃗ ∈ 𝑅 it is a linear 

function with respect to the vector 𝑦⃗ ∈ 𝑅, and for a fixed 𝑦⃗ it is a linear function 

with respect to 𝑥⃗. 

If 𝛷(𝑥⃗, 𝑦⃗) is a bilinear functional, then for 𝑥⃗1, 𝑥⃗2, 𝑦⃗1, 𝑦⃗2 R and an 

arbitrary real 𝛼 the following conditions are valid: 

𝛷(𝑥⃗1 + 𝑥⃗2, 𝑦⃗) = 𝛷(𝑥⃗1, 𝑦⃗) +  𝛷(𝑥⃗2, 𝑦⃗), 
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𝛷(𝛼𝑥⃗, 𝑦⃗) = 𝛼𝛷(𝑥⃗, 𝑦⃗), 

𝛷(𝑥⃗, 𝑦⃗1 + 𝑦⃗2) =  𝛷(𝑥⃗, 𝑦⃗1) +  𝛷(𝑥⃗, 𝑦⃗2), 

𝛷(𝑥⃗, 𝛼𝑦⃗) = 𝛼𝛷(𝑥⃗, 𝑦⃗) 

 An example of a bilinear functional is the dot product of vectors (𝑥⃗, 𝑦⃗) on 

𝑅𝑛, i.e. 

(𝑥⃗, 𝑦⃗) = 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦𝑛 

Let us consider a bilinear functional using coordinates of the vectors. Let 

a space R be given by the basis vectors 𝑒1, 𝑒2, … , 𝑒𝑛. It is obvious that any vector 

of the space can be decomposed along the basis vectors, e.g. 𝑥⃗, 𝑦⃗ ∈ 𝑅 have a 

form: 

𝑥⃗ = 𝑥1𝑒1  +  𝑥2𝑒2   +  … + 𝑥𝑛𝑒𝑛 =∑𝑥𝑖𝑒𝑖

𝑛

𝑖=1

 , 

𝑦⃗ = 𝑦1𝑒1  +  𝑦2𝑒2   +  … + 𝑦𝑛𝑒𝑛 =∑𝑦𝑖𝑒𝑖  .

𝑛

𝑖=1

 

Then, the bilinear functional can be expressed as follows: 

𝛷(𝑥⃗, 𝑦⃗) =  𝛷(𝑥1𝑒1  +  𝑥2𝑒2   +  … + 𝑥𝑛𝑒𝑛, 𝑦1𝑒1  +  𝑦2𝑒2   +  … + 𝑦𝑛𝑒𝑛) = 

 (6.1) 

=∑∑𝑥𝑗𝑦𝑗𝛷(𝑒𝑗 , 𝑒𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

= ∑ 𝛷(𝑒𝑗 , 𝑒𝑗)

𝑛

𝑖,𝑗=1

𝑥𝑗𝑦𝑗  =  ∑ 𝑎𝑖𝑗𝑥𝑗𝑦𝑗

𝑛

𝑖,𝑗=1

 

where the coefficients 𝑎𝑖𝑗 = 𝛷(𝑒𝑗 , 𝑒𝑗) depend only on the basis vectors, but are 

regardless of the vectors 𝑥⃗ and 𝑦⃗ themselves.  

 It is said that in the given basis, the bilinear functional 𝛷(𝑥⃗, 𝑦⃗) is 

represented by a bilinear form  

𝛷(𝑥⃗, 𝑦⃗) = ∑ 𝑎𝑖𝑗𝑥𝑗𝑦𝑗

𝑛

𝑖,𝑗=1

 

 Definition. The matrix 𝐴 =  [𝑎𝑖𝑗]𝑖,𝑗=1,..,̅𝑛 is called a matrix of the bilinear 

form relative to the given basis. 
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Definition. The bilinear form is called symmetric if for any 𝑥⃗, 𝑦⃗ ∈ 𝑅, an 

equality  

𝛷(𝑥⃗, 𝑦⃗)  =  𝛷(𝑦⃗, 𝑥⃗) 

is valid. 

 

In this case, we have 𝑎𝑖𝑗 = 𝑎𝑗𝑖, i.e. the matrix of symmetric bilinear form 

in any basis is symmetric. 

 

Definition. The bilinear function is called skew-symmetric if for any 

𝑥⃗, 𝑦⃗ ∈ 𝑅, an equality occurs: 

𝛷(𝑥⃗, 𝑦⃗) =  −𝛷(𝑦⃗, 𝑥⃗) 

In this case, we have 𝑎𝑖𝑗 = −𝑎𝑗𝑖, i.e. the matrix of skew-symmetric 

bilinear form in any basis is skew-symmetric. 

Definition. A bilinear form is alternating if and only if its coordinate 

matrix is skew-symmetric and the diagonal entries are all zero, i.e. 𝑎𝑖𝑖 = 0, 

 𝑖 =  𝑗. 

 

 6.2. Quadratic forms. Basic concepts 

Definition. A quadratic form is a bilinear symmetric form for 𝑥⃗ = 𝑦⃗, i.e. 

𝛷(𝑥⃗, 𝑥⃗). Therefore, a quadratic form of n variables 𝑥1, 𝑥2,..., 𝑥𝑛 is a polynomial 

of these variables such that every term has degree two: 

𝛷(𝑥⃗, 𝑥⃗) = 𝑄(𝑥1, 𝑥2, . . . , 𝑥𝑛) =∑∑𝑎𝑖𝑘𝑥𝑖𝑥𝑘

𝑛

𝑘=1

𝑛

𝑖=1

= ∑ 𝑎𝑖𝑘𝑥𝑖𝑥𝑘,                (6.2)

𝑛

𝑖,𝑘=1

 

Herein, we take into account that 𝑎𝑖𝑘 = 𝑎𝑘𝑖. 

If the variables 𝑥1, 𝑥2,..., 𝑥𝑛 are considered as coordinates of the vector 𝑥→ 

given in a linear n-dimensional space with a basis {𝑒𝑖}𝑖=1,𝑛, then the quadratic 

form can be defined as a scalar function of this vector, i.e. 
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𝑄(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐹(𝑥
→)    (6.3) 

Definition. A matrix 𝐴 = (𝑎𝑖𝑘)𝑖,𝑘=1,…,̅̅̅̅ 𝑛 is called a matrix of quadratic 

form in a given basis of the space, and the matrix is symmetric, 𝑎𝑖𝑘 = 𝑎𝑘𝑖, in 

any basis.  

The quadratic form can be written in a compact matrix form: 

𝑄(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1(𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛) + 

+𝑥2(𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛) + ⋯+ 𝑥𝑛(𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛) = 

= ∑∑𝑎𝑖𝑘𝑥𝑖𝑥𝑘

𝑛

𝑘=1

𝑛

𝑖=1

= (𝑥1, 𝑥2, . . . , 𝑥𝑛)(

𝑎11 𝑎12/2 . . . 𝑎1𝑛/2
𝑎12/2 𝑎22 . . . 𝑎2𝑛/2
. . . . . . . . . . . .
𝑎1𝑛/2 𝑎2𝑛/2 . . . 𝑎𝑛𝑛

)(

𝑥1
𝑥2
. . .
𝑥𝑛

) 

or 

𝑄(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑋
𝑇 ⋅ 𝐴 ⋅ 𝑋,     (6.4) 

where the coordinates of the vector are a column, 𝑋 = (

𝑥1
𝑥2
. . .
𝑥𝑛

).  

Example 6.2. Compose a matrix A of the quadratic form such as 𝑄 =

3𝑥1
2 + 2𝑥1𝑥2 − 𝑥1𝑥3 + 2𝑥2

2 + 6𝑥2𝑥3 − 5𝑥3
2. 

𝐴 =

(

 
 
3 1 −

1

2
1 2 3

−
1

2
3 −5

)

 
 

 

If two quadratic forms have the same matrices, which differ from each 

other only by the denotation of the variables, these forms are called equal. 

 

 6.3. Change of Basis 

We now answer the question, how does a matrix representing a quadratic 

form transform when a new basis is selected?  

Let {𝑥𝑖}𝑖=1,𝑛̅̅̅̅̅ and {𝑦𝑗}𝑗=1,𝑛̅̅̅̅̅
 be the coordinates of the same vector 𝑥⃗ in two 
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distinct bases {𝑔⃗𝑖}𝑖=1,𝑛̅̅̅̅̅ and {ℎ⃗⃗𝑗}𝑗=1,𝑛̅̅̅̅̅
 in an n-dimensional linear space. The 

transition from the basis {𝑔⃗𝑖}𝑖=1,𝑛̅̅̅̅̅ to a basis {ℎ⃗⃗𝑗}𝑗=1,𝑛̅̅̅̅̅
 is given by the following 

relations: 

{
 
 

 
 ℎ1
→ 
= 𝐶11 𝑔1

→ + 𝐶21 𝑔2
→ +. . . +𝐶𝑛1 𝑔𝑛

→ 

ℎ2
→ 
= 𝐶12 𝑔1

→ + 𝐶22 𝑔2
→ +. . . +𝐶𝑛2 𝑔𝑛

→ 

.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .

ℎ𝑛
→ 
= 𝐶1𝑛 𝑔1

→ + 𝐶2𝑛 𝑔2
→ +. . . +𝐶𝑛𝑛 𝑔𝑛

→ 

    (6.5) 

Then, the coordinates of the vector 𝑥⃗ in the basis 𝐺 = {𝑔⃗𝑖}𝑖=1,𝑛̅̅̅̅̅ are related to its 

coordinates in the basis 𝐻 = {ℎ⃗⃗𝑖}𝑖=1,𝑛̅̅̅̅̅ as follows: 

𝑥𝐺
→ = 𝐶 𝑥𝐻

→ = 𝐶 𝑦→,  𝑥𝐻
→ = 𝑦→    (6.6) 

where (

𝐶11 𝐶12 . . . 𝐶1𝑛
𝐶21 𝐶22 . . . 𝐶2𝑛
. . . . . . . . . . . .
𝐶𝑛1 𝐶𝑛2 . . . 𝐶𝑛2

) is the matrix of transition from basis {𝑔𝑖}𝑖=1,𝑛̅̅̅̅̅ to 

basis {ℎ𝑗}𝑗=1,𝑛̅̅̅̅̅
, and 𝑥𝐺

→ = 𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) and 𝑥𝐻
→ = 𝑦⃗ = 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) 

Expanding (6.6), we get 

{

𝑥1 = 𝐶11𝑦1 + 𝐶12𝑦2+. . . +𝐶1𝑛𝑦𝑛
𝑥2 = 𝐶21𝑦1 + 𝐶22𝑦2+. . . +𝐶2𝑛𝑦𝑛
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .
𝑥𝑛 = 𝐶𝑛1𝑦1 + 𝐶𝑛2𝑦2+. . . +𝐶𝑛𝑛𝑦𝑛

     (6.7) 

Then, we can talk not about the transformation of the basis by formulas 

(6.5), but about the linear transformation of variables 𝑥1, 𝑥2,..., 𝑥𝑛  and 

𝑦1, 𝑦2,..., 𝑦𝑛 of the given quadratic form 𝐹(𝑥⃗). 

The expression (6.7) in a matrix form looks like: 

𝑋 = 𝐶 ⋅ 𝑌. 

Given the formulas 𝐹(𝑥⃗𝐺) = 𝑋
𝑇𝐴𝐺𝑋 and 𝑋𝑇 = (𝐶𝑌)𝑇 = 𝑌𝑇𝐶𝑇, we obtain 

𝐹(𝑥⃗𝐺) = 𝑌
𝑇𝐶𝑇𝐴𝐺𝐶𝑌 
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On the other hand, 

𝐹(𝑥𝐻
→ ) = 𝑋𝑇 ⋅ 𝐴𝐻 ⋅ 𝑋 = 𝐹(𝑦

→) = 𝑌𝑇𝐴𝐻𝑌 

Since the quadratic form does not depend on the denotation of variables, then 

equating the right-hand sides of the quadratic form expression, we get 

𝐴𝐻 = 𝐶
𝑇 ⋅ 𝐴𝐺 ⋅ 𝐶       (6.8) 

The formula (6.8) presents the transformation of the quadratic form matrix  

Let us consider the matrix 𝐴𝐻 = 𝐶
𝑇𝐴𝐺𝐶. Since 𝐴𝐻

𝑇 = (𝐶𝑇𝐴𝐺𝐶)
𝑇 =

(𝐴𝐺𝐶)
𝑇 ⋅ (𝐶𝑇)𝑇 = 𝐶𝑇 ⋅ 𝐴𝐺

𝑇 ⋅ 𝐶 = 𝐶𝑇 ⋅ 𝐴𝐺 ⋅ 𝐶, then 𝐴𝐻 = 𝐴𝐻
𝑇, therefore, the 

matrix is a symmetric matrix that defines the quadratic form. 

It follows from the last equality that 

𝑑𝑒𝑡 𝐴𝐻 = (𝑑𝑒𝑡 𝐶)
2 ⋅ 𝑑𝑒𝑡 𝐴𝐺     (6.9) 

Since C is a transition matrix, it is non-singular, and (det 𝐶)2 > 0 as a  

result, the matrices 𝐴𝐻 , 𝐴𝐺 always have the same signs. 

 

Example 6.3. Write the expression of the quadratic form 𝐹(𝑥⃗) = 𝑥1
2 +

4𝑥1𝑥2 + 2𝑥2
2 in a new basis of the vectors ℎ1⃗⃗ ⃗⃗ = (1,3),  ℎ2⃗⃗ ⃗⃗ = (−1,2). 

Solution. The matrix of the quadratic form in the initial basis is 𝐴𝐺 =

𝐴𝑒 = (
1 2
2 2

). Then, compose the transition matrix from the “old” basis to a new 

basis H. Thus, С = (
1 −1
3 2

). Finally, according to rule (6.8), the matrix of the 

quadratic form looks like  

𝐴𝐻 = 𝐶
𝑇𝐴𝐺𝐶 = (

1 3
−1 2

) (
1 2
2 2

) (
1 −1
3 2

) = (
31 9
9 1

). 

In turn, the quadratic form in the new basis is 

𝐹(𝑦⃗) = 31𝑦1
2 + 18𝑦1𝑦2 + 𝑦2

2. 

 

 6.4. Classification of Quadratic Forms 

Definition. The rank of a quadratic form matrix is called a rank of the 
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quadratic form.  

If RgА = 𝑛 (n is a space dimension), then the quadratic form is called 

non-singular, otherwise it is singular.  

 

Definition. The canonical quadratic form 𝐹(𝑥→) is a type of a quadratic 

form, whose 𝑎𝑖𝑘 = 0, if 𝑖 ≠ 𝑘, and 𝑎𝑖𝑖 ≠ 0, if 𝑖 = 𝑘, i.e. the form does not 

contain the products of distinct variables and can be presented in the form: 

𝐹(𝑥→) = 𝜆1𝑥1
2 + 𝜆2𝑥2

2+. . . +𝜆𝑛𝑥𝑛
2. 

 The basis, where such form occurs is called a canonical basis. 

 

 Definition. The normal form of the quadratic form 𝐹(𝑥→) is its canonical 

form, in which the coefficients before the squares of the variables (excluding 

zeros) are equal to ± 1. 

Definition. A quadratic form 𝐹(𝑥→) is positive definite if ∀ 𝑥→ ≠ 0
→

, 

𝐹(𝑥→) > 0. 

Definition. A quadratic form 𝐹(𝑥→) is negative definite if ∀ 𝑥→ ≠ 0
→

, 

𝐹(𝑥→) < 0. 

Theorem (Sylvester's law of inertia for quadratic forms). For any way 

of reducing a quadratic form  

𝐹(𝑥→) = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑘

𝑛

𝑖,𝑗=1

 

with real coefficients 𝑎𝑖𝑗 ∈ 𝑅 to a sum of squares  

∑𝑏𝑖𝑦𝑖
2

𝑛

𝑖=1

 

by a linear change of variables 𝑥→ = 𝐶 𝑦→, where C  is a non-singular matrix with 

real coefficients, the number of the coefficients 𝑏𝑖 of a given sign in the 
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canonical quadratic form is an invariant of 𝐹(𝑥→), i.e. does not depend on a 

particular choice of diagonalizing basis. 

 

Expressed geometrically, the law of inertia says that all maximal 

subspaces on which the restriction of the quadratic form is positive definite 

(respectively, negative definite) have the same dimension. These dimensions are 

the positive and negative indices of inertia. 

 

Theorem (Sylvester's criterion). A quadratic form 𝐹(𝑥→) is positive 

definite if and only if all minors taken from the top left corner of the quadratic 

form matrix are positive, i.e. 

𝐷𝑘 > 0, ∀𝑘 = 1, 𝑛, where 𝐷𝑘 = |

𝑎11 𝑎12 . . . 𝑎1𝑘
𝑎21 𝑎22 . . . 𝑎2𝑘
. . . . . . . . . . . .
𝑎𝑘1 𝑎𝑘2 . . . 𝑎𝑘𝑘

| 

Theorem. A quadratic form 𝐹(𝑥→) is negative definite if and only if the 

signs of all minors taken from the top left corner of the quadratic form matrix 𝐷𝑖 

alternate, starting with a minus: 

𝐷1 < 0,  𝐷2 > 0,    𝐷3 < 0, … 

 

Example 6.4. Investigate the significance of the quadratic form 𝐹(х⃗) =

−𝑥1
2 − 6𝑥2

2 − 6𝑥3
2 + 12𝑥1𝑥2 − 12𝑥1𝑥3 + 6𝑥2𝑥3. 

Solution. Find a positive(negative-)definiteness of a quadratic form given 

by the matrix in the form: 

𝐴 = (
−11 6 −6
6 −6 3
−6 3 −6

) 

𝐷1 = −11 < 0, 𝐷2 = |
−11 6
6 −6

| = 30 > 0, 𝐷3 = |
−11 6 −6
6 −6 3
−6 3 −6

| = −81 <
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0. 

Since the signs of the minors alternate from minus, the quadratic form is 

negative. 

 

 6.5. Lagrange Reduction of Quadratic Form to Canonical form 

Theorem. Any quadratic form can be reduced to a canonical form by 

some non-singular linear transformation. That is, there is a basis in which this 

form is reduced to the sum of squares. 

Lagrange's method consists in the following. One may assume that not all 

the coefficients in (6.2) are zero. Therefore, two cases are possible. 

1. A quadratic form contains the square of at least one variable 𝑥𝑖, i.e. 

∃𝑎𝑖𝑖 ≠ 0 

In this case, we need to group all the terms containing this variable, and 

complete the square so that the remaining terms do not contain the variable 𝑥𝑖. 

After that, the remaining terms form a quadratic form of the (n-1)-th order. After 

finite number of similar steps one can reduce the form to a sum of squares. 

 

Example 6.5. Reduce the quadratic form to the canonical form: 

𝐹 = 9𝑥1
2 + 𝑥1𝑥2 + 6𝑥1𝑥3 + 𝑥2

2 + 𝑥4
2 − 4𝑥2𝑥3 + 2𝑥2𝑥4 − 8𝑥3𝑥4 

Solution. This quadratic form contains squares of 𝑥1, 𝑥2, 𝑥4. Select any of 

them, for example 𝑥2, and group all the members that contain this variable: 

(𝑥2
2 + 𝑥1𝑥2 − 4𝑥2𝑥3 + 2𝑥2𝑥4) + 9𝑥1

2 + 6𝑥1𝑥3 + 𝑥4
2 − 8𝑥3𝑥4 + 4𝑥4

2 − 8𝑥3𝑥4. 

Complete the square with respect to 𝑥2: 

(𝑥2 +
1

2
𝑥1 − 2𝑥3 + 𝑥4)⏟              

𝑦1

2
−
1

4
𝑥1
2 − 4𝑥3

2 − 𝑥4
2 + 8𝑥1𝑥3 + 4𝑥3𝑥4 − 𝑥1𝑥4. 

Then you can write 𝐹(𝑥→) as: 

𝐹 = 𝑦1
2 + 𝐹1(𝑥

→), 
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where 

𝐹1(х⃗) =
35

4
𝑥1
2 − 4𝑥3

2 + 8𝑥1𝑥3 − 4𝑥3𝑥4 − 𝑥1𝑥4 = −4 (𝑥3 − 𝑥1 +
1

2
𝑥4)⏟          

𝑦2

2
+

51

4
𝑥1
2 + 𝑥4

2 − 5𝑥1𝑥4, 

or 

𝐹1 = −4𝑦2
2 + 𝐹2(𝑥

→), 

where 

𝐹2(𝑥
→) =

51

4
𝑥1
2 + 𝑥4

2 − 5𝑥1𝑥4 = (𝑥4 −
5

2
𝑥1)⏟      

𝑦3

+
13

2
𝑥1
2⏟
𝑦4

. 

Finally, 𝐹(𝑥→) looks like: 

𝐹(𝑦→) = 𝑦1
2 − 4𝑦2

2 + 𝑦3
2 +

13

2
𝑦4
2, 

where we denote: 

{
 
 

 
 𝑦1 = 𝑥2 +

1

2
𝑥1 − 2𝑥3 + 𝑥4

𝑦2 = 𝑥3 − 𝑥1 +
1

2
𝑥4

𝑦3 = 𝑥4 −
5

2
𝑥1

𝑦4 = 𝑥1

     (6.10) 

The system (6.10) establishes a connection between the new coordinates 

and the old ones. One can find a matrix of transition from the old basis to the 

new one by expressing the old variables through new ones: 

{
 
 
 
 

 
 
 
 
𝑥1 = 𝑦4

𝑥4 = 𝑦3 +
5

2
𝑦4

𝑥3 = 𝑦2 + 𝑦4 −
1

2
(𝑦3 +

5

2
𝑦4) = 𝑦2 −

1

2
𝑦3 −

1

4
𝑦4

𝑥2 = 𝑦1 −
1

2
𝑦4 + 2(𝑦2 −

1

2
𝑦3 −

1

4
𝑦4) − 𝑦3 −

5

2
𝑦4 =

= 𝑦1 + 2𝑦2 − 2𝑦3 (−
1

2
+
1

2
+
5

2
)

 

or 
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{
  
 

  
 
𝑥1 = 𝑦4

𝑥2 = 𝑦1 + 2𝑦2 − 2𝑦3 −
7

2
𝑦4

𝑥3 = 𝑦2 −
1

2
𝑦2 −

1

4
𝑦4

𝑥4 = 𝑦3 +
5

2
𝑦4

⇒ 𝐶 =

(

 
 
 
 

0 0 0 1

1 2 −2 −
7

2

0 1 −
1

2
−
1

4

0 0 1
5

2 )

 
 
 
 

 

Let's check result using the formula 𝐴𝐻 = 𝐶
𝑇 ⋅ 𝐴𝐺 ⋅ 𝐶. 

𝐴𝐻 =

(

 
 
 

0 1 0 0
0 2 1 0

0 −2 −
1

2
1

1 −
7

2
−
1

4

5

2)

 
 
 
⋅

(

 
 
 
9

1

2
3 0

1

2
1 −2 1

3 −2 0 −4
0 1 −4 1 )

 
 
 
⋅

(

 
 
 
 

0 0 0 1

1 2 −2 −
7

2

0 1 −
1

2
−
1

4

0 0 1
5

2 )

 
 
 
 

= 

=

(

 
 

1 0 0 0
0 −4 0 0
0 0 1 0

0 0 0
13

2 )

 
 

 

 

2. A quadratic form has no squares of variables, i.e. all 𝑎𝑖𝑖 = 0, and some 

of the coefficients 𝑎𝑖𝑗 ≠ 0, for example 𝑎12 ≠ 0. 

In this case, first of all, a replacement is introduced: 

{
 
 

 
 
𝑥1 = 𝑦1 + 𝑦2
𝑥2 = 𝑦1 − 𝑦2
𝑥3 = 𝑦3
…………… . . .
𝑥𝑛 = 𝑦𝑛

     (6.11) 

System (6.11) is a transition to a new basis in which the quadratic form 

will have squares of variables. That is, we can reduce the form using the 

previous scheme. 

 

Example 6.6. Reduce 𝐹 = 𝑥1𝑥2 − 2𝑥1𝑥3 + 4𝑥2𝑥3 to the canonical form. 

Solution. Introduce the replacement (6.11): 
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{

𝑥1 = 𝑦1 + 𝑦2
𝑥2 = 𝑦1 − 𝑦2
𝑥3 = 𝑦3

. 

Then, the quadratic form with respect to new variables looks like: 

𝐹(𝑦→) = 𝑦1
2 − 𝑦2

2 − 2(𝑦1 + 𝑦2) ⋅ 𝑦3 + 4(𝑦1 − 𝑦2)𝑦3

= 𝑦1
2 − 𝑦2

2 + 2𝑦1𝑦3 − 6𝑦2𝑦3 

Next, combining the variables and completing the squares, we get: 

𝐹 = (𝑦1
2 + 2𝑦1𝑦3 + 𝑦3

2)⏟            
(𝑦1+𝑦3)

2

− 𝑦3
2 − 𝑦2

2 − 6𝑦2𝑦3 = 

herein, new variables are introduced such that 

= (𝑦1 + 𝑦3)⏟      
𝑧1

2
− (𝑦2

2 + 6𝑦3𝑦2 + 93
2)⏟            

𝑦2+3𝑦3=𝑧2

+ 8𝑦3
2⏟
𝑧3

= 𝑧1
2 − 𝑧2

2 + 8𝑧3
2 

The final relationship between the coordinates is 

{

𝑧1 = 𝑦1 + 𝑦3
𝑧2 = 𝑦2 + 3𝑦3
𝑧3 = 𝑦3

  { 

𝑦3 = 𝑧3
𝑦2 = 𝑧2 − 3𝑧3
𝑦1 = 𝑧1 − 𝑧3

  {

𝑥3 = 𝑧3
𝑥2 = 𝑧1 − 𝑧2 + 2𝑧3
𝑥1 = 𝑧1 + 𝑧2 − 4𝑧3

, 

or 

{

𝑥1 = 𝑧1 + 𝑧2 − 4𝑧3
𝑥2 = 𝑧1 − 𝑧2 + 2𝑧3
𝑥3 = 𝑧3

. 

It follows from this system, the transition matrix takes a form 

𝐶 = (
1 1 −4
1 −1 2
0 0 1

) 

Let's check it by using the formula: 𝐴𝑒 = 𝐶
𝑇 ⋅ 𝐴 ⋅ 𝐶. 

𝐴𝑒 = (
1 1 0
1 −1 0
−4 2 1

)

(

 
 
0

1

2
−1

1

2
0 2

−1 2 0 )

 
 
(
1 1 −4
1 −1 2
0 0 1

) = (
1 0 0
0 −1 0
0 0 8

). 
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 6.6. Quadratic Forms and Principal Axes 

Let us be given a quadratic form 𝐹(𝑥→) in the Euclidean space with an 

orthonormal basis, {𝑓𝑘}𝑘=1,𝑛. Let 𝑥1, 𝑥2, 𝑥3,.., 𝑥𝑛 be the coordinates of the vector 

𝑥→ in this basis. Since the quadratic form matrix is symmetric, this matrix can be 

considered as a matrix of the self-adjoint operator A in the orthonormal basis.  

It is known that the matrix of a self-adjoint operator takes a diagonal form 

in an orthonormal basis {𝑒𝑘}𝑘=1,𝑛 generated by its eigenvectors. So, if we 

choose a transformation 𝑥⃗ = 𝑃𝑦⃗ providing orthogonally diagonalize matrix A, 

then a new quadratic form will be 𝑦⃗𝑇𝐴𝑒𝑦⃗, where 𝐴𝑒 is a diagonal matrix with 

the eigenvalues 𝜆𝑖 of A on the main diagonal, that is,  

𝑥⃗𝑇𝐴𝑥⃗ = 𝑦⃗𝑇𝐴𝑒𝑦⃗ = {𝑦1 𝑦2 … 𝑦𝑛} [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ 𝜆𝑛

] {

𝑦1
𝑦2
⋮
𝑦𝑛

} 

= 𝜆1𝑦1
2  +  𝜆2𝑦2

2  +  … + 𝜆𝑛𝑦𝑛
2 

 

 Thus, we have the following result, called the principal axes theorem: 

 

 Theorem: If A is a symmetric 𝑛 ×  𝑛 matrix, then there is an orthogonal 

change of variable that transforms the quadratic form 𝑥⃗𝑇𝐴𝑥⃗ into a quadratic 

form 𝑦⃗𝑇𝐷𝑦⃗ with no cross terms. Specifically, if P orthogonally diagonalizes A, 

then making the change of variable 𝑥⃗ = 𝑃𝑦⃗ in the quadratic form 𝑥⃗𝑇𝐴𝑥⃗ yields 

the quadratic form  

  𝐹(𝑥→) = 𝑥⃗𝑇  𝐴𝑥⃗  = 𝑦⃗𝑇𝐴𝑒𝑦⃗ =  𝜆1𝑦1
2  +  𝜆2𝑦2

2  +  … + 𝜆𝑛𝑦𝑛
2  (6.12) 

in which 𝜆1, 𝜆2, ... , 𝜆𝑛  are the eigenvalues of A corresponding to the 

eigenvectors that form the successive columns of P, and 𝑦1, 𝑦2,..., 𝑦𝑛 are the 

coordinates of the vector 𝑥→ in the new basis. 
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The eigenvectors associated with the eigenvalues 𝜆𝑖(𝑖 = 1,𝑛) form lines 

called the principal axes of the quadratic form.  

The transition from the natural basis to the principal axes basis is fulfilled 

by the orthogonal matrix P. Thus, the matrix A of quadratic form is related to the 

matrix Ae in the basis of eigenvectors by the formula: 

𝐴𝑒 = 𝑃
𝑇 ⋅ 𝐴 ⋅ 𝑃. 

It follows that the reduction of a quadratic form to the principal axes 

coincides with the algorithm of diagonalization of Hermitian matrices. Thus, to 

reduce a quadratic form to the canonical form using an orthogonal 

transformation, it is necessary to perform the following steps: 

1. Compose a matrix A of square form 

2. Find the eigenvalues of this matrix and write the form in the principal 

axes. 

3. Create an orthonormal basis {𝑒𝑘}𝑘=1
𝑛

 using eigenvectors associated with 

the known eigenvalues. 

4. Compose the orthogonal matrix P of the transition from the natural basis 

to the basis {𝑒𝑘}𝑘=1, where the quadratic form matrix is diagonal, i.e. the 

quadratic form takes a form (6.12) with respect to the principal axes. 

 

Example 6.7. Find the orthogonal transformation that reduces a quadratic 

form 𝐹(𝑥→) = 17𝑥1
2 + 14𝑥2

2 + 14𝑥3
2 − 4𝑥1𝑥2 − 4𝑥1𝑥3 − 8𝑥2𝑥3 to the canonical 

form and write down it. 

Solution. 

1. Let's compose the matrix A: 

𝐴 = (
17 −2 −2
−2 14 −4
−2 −4 14

). 

2. Find eigenvalues and eigenvectors of this matrix. Let's compose the 
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homogeneous system of equations 𝐴𝑥⃗ = λ𝑥⃗, i.e. 

{

(17 − 𝜆)𝑥1 − 2𝑥2 − 2𝑥3 = 0,

−2𝑥1 + (14 − 𝜆)𝑥2 − 4𝑥3 = 0,

−2𝑥1 + −4𝑥2 + (14 − 𝜆)𝑥3 = 0.

 

Let's construct the characteristic equation: 𝑝(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 

𝑝(𝜆) = |
17 − 𝜆 −2 −2
−2 14 − 𝜆 −4
−2 −4 (14 − 𝜆)

|

𝑟3−𝑟2

= 0 

|
17 − 𝜆 −2 −2
−2 14 − 𝜆 −4
−2 −18 + 𝜆 18 + 𝜆

| = (18 − 𝜆) |
17 − 𝜆 −2 −2
−2 14 − 𝜆 −4
0 −1 1

|

𝑡2+𝑡3

= 

= (18 − 𝜆) |
17 − 𝜆 −4 −2
−2 10 − 𝜆 −4
0 0 0

| = (18 − 𝜆) |
17 − 𝜆 −4
−2 10 − 𝜆

| = 

(18 − 𝜆)((17 − 𝜆)(10 − 𝜆) − 8) = (18 − 𝜆)(𝜆2 − 27𝜆 + 162) = 0  

 𝜆1 = 9, 𝜆2 = 𝜆3 = 18 

3. Find the eigenvectors: 

𝜆1 = 9  

After substituting this first eigenvalue in the homogeneous system, we find the 

solution of the system as follows: 

(
8 −2 −2
−2 5 −4
−2 −4 5

)~(
4 −1 −1
−2 5 −4
−2 −4 5

)
𝑟2−𝑟3
𝑟1+2𝑟3

~(
0 −9 9
0 9 −9
−2 −4 5

)~(
0 1 −1
−2 −4 5

) 

𝑥2 = 𝑥3 

−2𝑥1 = 4𝑥2 − 5𝑥3  −2𝑥1 = 4𝑥3 − 5𝑥3 = −𝑥3  𝑥1 =
𝑥3

2
 

 𝑥1 𝑥2 𝑥3 

𝑒1
→ 

 1 2 2 

That is, 𝑒1
→ = (

1
2
2
) is the eigenvector associated with 𝜆1 = 9. 

Similarly, 
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𝜆2 = 18: 

(
−1 −2 −2
−2 −4 −4
−2 −4 −4

)~(1 2 2) 𝑥1 = −2𝑥2 − 2𝑥3 

 𝑥1 𝑥2 𝑥3 

𝑒2
→ 

 -2 1 0 

𝑒3
→ 

 -2 0 1 

That is, 𝑒2⃗⃗ ⃗⃗ = (
−2
1
0
) and   𝑒3⃗⃗ ⃗⃗ = (

−2
0
1
) are the eigenvectors associated with 𝜆2 =

18.  

The system of vectors 𝑒1
→ 𝑒2
→ 𝑒3
→ 

 is not orthonormal, i.e. the vectors are not 

pairwise orthogonal, e.g. (𝑒2
→ , 𝑒3
→ ) = 4 ≠ 0 and are not unit length.  

4. Let’s orthogonalize 𝑒2
→ 

 and 𝑒3
→ 

, using the Gramm-Schmidt process: 

𝑒2
∗⃗⃗ ⃗⃗ = 𝑒2⃗⃗ ⃗⃗ ; 

𝑒3
∗⃗⃗ ⃗⃗ = 𝑒3⃗⃗ ⃗⃗ + 𝛼 ⋅ 𝑒2

∗⃗⃗ ⃗⃗ ⇒ (𝑒3
∗⃗⃗ ⃗⃗ , 𝑒2

∗⃗⃗ ⃗⃗ ) = (𝑒3⃗⃗ ⃗⃗ , 𝑒2
∗⃗⃗ ⃗⃗ ) + 𝛼 ⋅ (𝑒2

∗⃗⃗ ⃗⃗ , 𝑒2
∗⃗⃗ ⃗⃗ ) = 0. 

𝛼 = −
(𝑒3⃗⃗ ⃗⃗ , 𝑒2

∗⃗⃗ ⃗⃗ )

(𝑒2
∗⃗⃗ ⃗⃗ , 𝑒2

∗⃗⃗ ⃗⃗ )
= −

4

5
; 

𝑒3
∗⃗⃗ ⃗⃗ = (−2,0,1) −

4

5
(−2,1,0) = (−2 +

8

5
;−
4

5
; 1) = (−

2

5
;−
4

5
; 1). 

Thereby, the system of vectors 𝑒1
→ 𝑒2

∗𝑒3
∗ is orthogonal. Let's make it 

orthonormal: 

𝑔1
→ =

𝑒1
→ 

‖𝑒1⃗⃗⃗⃗ ‖
= (
1

3
;
2

3
;
2

3
), 

𝑔2
→ =

𝑒2
→ 

‖𝑒2⃗⃗ ⃗⃗ ‖
=
1

√5
(−2; 1; 0), 

𝑔3
→ =

𝑒3
→ 

‖𝑒3⃗⃗ ⃗⃗ ‖
=

1

√ 4
25
+
16
25
+ 1

⏟        
3 √5⁄

(−
2

5
;−
4

5
; 1) = (−

2

3√5
;−

4

3√5
;
5

3√5
). 



145 
 

 5. Construct a matrix of transition from the old basis to a new basis of the 

eigenvectors. So, each column of the matrix is the appropriate eigenvector: 

𝑃 =
(

 
 
 

1
3
−
2

√5
−
2

3√5
2
3

1

√5
−
4

3√5
2
3

0
5

3√5 )

 
 
 

𝑔1⃗⃗⃗⃗⃗   𝑔2⃗⃗⃗⃗⃗    𝑔3⃗⃗⃗⃗⃗

 

Let 𝑦1𝑦2𝑦3 be the coordinates of the vector 𝑥→ in the basis 𝑔1
→  , 𝑔2

→ ,  𝑔3
→ 

. Then 

𝑥→ = 𝑃 ⋅ 𝑦→, 

or 

(
𝑥1
𝑥2
𝑥3

) = 𝑃 ∙ (
𝑦1
𝑦2
𝑦3

) =

(

 
 
 
 

1

3
−
2

√5
−
2

3√5
2

3

1

√5
−
4

3√5
2

3
0

5

3√5 )

 
 
 
 

∙ (
𝑦1
𝑦2
𝑦3

) 

𝑥1 =
1

3
𝑦1 −

2

5
𝑦2 −

2

3√5
𝑦3 

𝑥2 =
2

3
𝑦1 +

1

5
𝑦2 +

4

3√5
𝑦3 

𝑥3 =
2

3
𝑦1 +

5

3√5
𝑦3 

Finally, the quadratic form in the principal axes looks like: 

𝐹(𝑦→) = 9𝑦1
2 + 18𝑦2

2 + 18𝑦3
2 

 One can verify the diagonal matrix of the quadratic form by using the 

transformation of the matrices: 𝐴𝑒 = 𝑃
𝑇 ⋅ 𝐴 ⋅ 𝑃. 

 

 6.7. Simultaneous reduction of two quadratic forms to the canonical 

form 

 The problem of reducing simultaneously two quadratic forms to the 
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canonical form does not always have a solution. But it can be done if certain 

conditions are fulfilled.  

 Theorem. If 𝐹1(𝑥
→) = 𝑋𝑇𝐴𝑋 is an arbitrary, and 𝐹2(𝑥

→) = 𝑋𝑇𝐵𝑋 is 

positive define quadratic forms, then there is a non-singular transformation that 

reduces both the forms to the canonical form, herewith the form 𝐹2(𝑥
→) is a 

normalized form. 

 Proof. By Lagrange's theorem, any quadratic form can always be reduced 

to a diagonal form. According to the Sylvester's criterion and the laws of inertia, 

any positive define quadratic form in a canonical form has all eigenvalues 𝜆і >

0. In addition, if all 𝜆і > 0 then we can find a transformation that all 𝜆і will be 

equal to unity. That is, there is a transformation C such that 

𝐵𝐻 = 𝐶
𝑇𝐵𝐶 = 𝐼     (6.13) 

 If we apply this transformation to the first quadratic form 𝐹1(𝑥
→), its 

matrix will change according to the rule (6.8), i.e. 

𝐴𝐻 = 𝐶
𝑇𝐴𝐶.     (6.14) 

 Next, find the orthogonal transformation D, which diagonalizes 𝐴𝐻 as 

follows: 

𝐴е = 𝐷
𝑇𝐴𝐻𝐷 = 𝑑𝑖𝑎𝑔(… ). 

 Then, we apply the same orthogonal transformation to the quadratic form 

𝐹2(𝑥
→). In this case, the matrix 𝐵𝐻 = 𝐼. Thus, we get 

𝐵е = 𝐷
𝑇𝐵𝐻𝐷 = 𝐷

𝑇𝐼𝐷 = 𝐴е = 𝐷
𝑇𝐷 = 𝐼. 

 Therefore, since the orthogonal transformation does not change the unit 

matrix, the simultaneous transformation of quadratic forms 𝐹1(𝑥
→) and 𝐹2(𝑥

→) is 

possible. This is what was to be proven.   

 Find the orthogonal transformation D. Since the orthogonal 

transformation takes place at the second step, the quadratic form is considered in 

the base H, i.e. 



147 
 

𝑑𝑒𝑡(𝐴𝐻 − 𝜆𝐼) = 0. 

Substituting (6.13) and (6.14) in this equation, we get 

𝑑𝑒𝑡(𝐶𝑇𝐴𝐶 − 𝜆𝐶𝑇𝐵𝐶) = 0, 

𝑑𝑒𝑡(𝐶𝑇(𝐴 − 𝜆𝐵)𝐶) = 0. 

According to the properties of the determinant: 

𝑑𝑒𝑡𝐶2 ∙ 𝑑𝑒𝑡(𝐴 − 𝜆𝐵) = 0. 

Since C is non-singular matrix, then 𝑑𝑒𝑡𝐶 ≠ 0 and 

𝑑𝑒𝑡(𝐴 − 𝜆𝐵) = 0     (6.15) 

Let's write down the corresponding SLAE for search of eigenvectors: 

(𝐴𝐻 − 𝜆𝐼)𝑋𝐻 = 0⃗⃗ 

(𝐶𝑇𝐴𝐶 − 𝜆𝐶𝑇𝐵𝐶)𝑋𝐻 = 𝐶
𝑇(𝐴 − 𝜆𝐵)𝐶𝑋𝐻 = 𝐶

𝑇(𝐴 − 𝜆𝐵)𝑋𝐺 = 0⃗⃗. 

So, we got the system in the initial basis: 

(𝐴 − 𝜆𝐵)𝑋 = 0     (6.16) 

 Thus, for the simultaneous reduction of two quadratic forms to the 

canonical form, it is necessary to solve successively the problems (6.15) and 

(6.16). 

 

 Example 6.8. Reduce simultaneously two quadratic forms to the canonical 

form: 

𝐹1 = 8𝑥
2 − 26𝑥𝑦 + 21𝑦2,    𝐹2 = 10𝑥

2 − 34𝑥𝑦 + 29𝑦2. 

 Solution. Let's write the matrices of these quadratic forms: 

𝐴1 = (
8 −13
−13 21

), 𝐴2 = (
10 −17
−17 29

). 

𝐹2 is a positive definite form. Indeed, 

𝐷1 = 10 > 0 and  𝐷2 = |
10 −17
−17 29

| = 1 > 0. 

Thus, by the appropriate transformations we get a diagonal form of 𝐹1, and a 

normalized from of 𝐹2.  

 Solve the equation (6.15), bearing in mind that 𝐴 = 𝐴1, 𝐵 = 𝐴2 are the 
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corresponding matrices of the quadratic forms. Then, 

𝑑𝑒𝑡(𝐴 − 𝜆𝐵) = 0     ⇒      |
8 − 10𝜆 −13 + 17𝜆
−13 + 17𝜆 21 − 29𝜆

| = 0.  

The solutions are the values 𝜆1 = 1 and 𝜆2 = −1. 

 Thus, in the new basis, the quadratic forms look like: 

𝐹1
′ = 𝜆1𝑥1

2 + 𝜆2𝑦1
2 = 𝑥1

2 − 𝑦1
2 and 𝐹2′ = 𝑥1

2 + 𝑦1
2 

 Now, we need to find the basis that allows diagonalizing these forms. To 

do it, we have to solve the system of equations (6.16) at 

𝜆1 = 1: 

(
−2 4
4 −8

)~( −1 2)  𝑥1 = 2𝑥2 

 𝑥1 𝑥2 

𝑒1
→ 

 2 1 

𝑒1
→ = (

2
1
) is the first eigenvector; 

and, similarly, at 

𝜆2 = −1: 

(
18 −30
−30 50

)~( −3 5)  3𝑥1 = 5𝑥2 

 𝑥1 𝑥2 

𝑒2
→ 

 5 3 

𝑒2
→ = (

5
3
) is the second eigenvector. 

 Compose a matrix of transition, where their columns are the eigenvectors: 

𝐶 = (
2 5
1 3

). 

Then, the transformation between the “old” and “new” coordinates looks like: 

(
𝑥
𝑦) = (

2 5
1 3

) (
𝑥1
𝑦1
)   {

𝑥 = 2𝑥1 + 5𝑦1
𝑦 = 𝑥1 + 3𝑦1 

 

It could be verified by direct substituting the above written transform to the 

quadratic forms в 𝐹1 and 𝐹2 to get 𝐹1
′ and 𝐹2

′. 
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Appendix 1 

A short English-Ukrainian vocabulary 

A 

adjoint приєднаний, спряжений 

algebraic cofactor алгебраїчне доповнення 

associative асоціативний 

B 

basis 

 arbitrary

 natural

базис 

 довільний базис

 каноничний базис

 orthonormal  ортонормальний базис

bilinear form 

 alternating

 quadratic

 symmetric

 skew-symmetric

білінійна форма 

 знакозміна

 квадратична

 симетрична

 кососиметрична

block matrix блочна матриця 

bracket  дужка 

C 

column стовпчик 

commutative  комутативний  

complete square виділити повний квадрат 

D 

decomposition розкладання 

determinant визначник 

diagonalizable діагоналізований 

dimension вимір  

direct sum  пряма сума 

distributive дистрибутивний 

dоmain область 
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E 

eigenspace власний простір 

eigenvalue власне значення 

еigenvector власний вектор 

F 

form алгебраїчний об'єкт у вигляді 

поліноміального виразу змінних 

G 

Gram − Schmidt orthogonalization 

 Gram determinant

 Gram matrix

ортогоналізація Грама − Шмідта 

визначник Грама 

матриця Грама 

H 

homogeneous однорідний 

I 

intersection перетин 

invertible  невироджений 

L 

linear span лінійна оболонка 

linear 

 dependency

 independency

лінійна залежність 

лінійна незалежність 

M 

matrix 

 block

 change-of-basis

 Gram

 identity

 inverse

 Hermitian

 reflection

 sparse

матриця 

 блочна матриця

 матриця перетворення

 матриця Грама

 одинична матриця

 обернена матриця

 Ермітова матриця

 матриця відзеркалення

 розрідженa матриця
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 square

 transpose

 transition

 triangular

 квадратна матриця

 транспонована матриця

 матриця переходу

 трикутна матриця

minor 

 additional

 basic

мінор 

 додатковий

 головний

multiplicity кратність 

O 

operator оператор 

 adjoint

 nonsingular

 orthogonal

 positive define

 projection

 self-adjoint

 semi-definite

 unitary

 спряжений оператор

 несингулярний оператор

 ортогональний оператор

 додатно визначений оператор

 оператор проєктування

 самоспряжений оператор

 напіввизначений оператор

 унітарний оператор

orthogonal 

 complement

 projection

 ортогональне доповнення

 ортогональна проєкція

P 

pairwise 

pivot  

principal axis 

попарно 

ведучий елемент 

головні осі

polynomial 

 annihilating

 characteristic

 n-th degree

 анігіляційний поліном

 характеристичний поліном

 поліном n-го порядку
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Q 

quadratic form квадратична форма 

R 

rank 

 matrix

ранг 

 ранг матриці

row рядок 

 reduced row echelon form  зведена канонічна форма

S 

simultaneously 

skew-symmetric 

spectral decomposition 

space 

 Euclidean

 linear

 normed

 vector

одночасно 

кососиметричний 

спектральне розкладання 

простір 

 простір Евкліда

 лінійний простір

 нормований простір

 векторний простір

subspace підпростір 

T 

transformation перетворення 

U 

union об’єднання 

V 

vector algebra векторна алгебра 
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