
MODERN
TECHNOLOGIES

OF SECURE
PROGRAMMING

V. M. Savchenko and O. V. Mnushka

MINISTRY OF EDUCATIONAND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY

“KHARKIV POLYTECHNIC INSTITUTE”

V. M. Savchenko and O. V. Mnushka

MODERN TECHNOLOGIES OF SECURE

PROGRAMMING

Educational and Methodological Guide

for Independent Study by Second (Master’s) Level Students

of Full-Time, Part-Time, and Dual Study Forms

in Specialty 123 “Computer Engineering”

Approved by

the Editorial and Publishing

Board of the NTU “KhPI”,

Protocol No. 1 dated 13.02.2025.

Kharkiv

NTU “KhPI”

2025

UDC 004.42/.49:004.056(075)

S26

Reviewers:

V. D. Kovalov, Doctor of Technical Sciences, Professor, Rector of Donbas State

Machine-Building Academy, laureate of the State Prize of Ukraine in Science and Technology;

K. A. Trubchaninova, Doctor of Technical Sciences, Professor, Ukrainian State University of

Railway Transport

Savchenko V. M.

S26 Modern Technologies of Secure Programming: Educational and Methodological

Guide for Independent Study by Second (Master’s) Level Students of Full-Time,

Part-Time, and Dual Study Forms in Specialty 123 “Computer Engineering”

/ V. M. Savchenko, O. V. Mnushka. – Kharkiv: NTU “KhPI”, 2025. – 102 p.

ISBN 978-617-05-0554-5

This educational and methodological guide covers key concepts of cybercrime, methods

of protection against threats, and secure programming standards. It contains the essential

theoretical minimum and assignments for students’ independent work.

Intended for independent work by second (Master’s) level students in full-time, part-time,

and dual forms of study in specialty 123 “Computer Engineering”.

Fig. 14. Tab. 8. Refs. 36 titles.

Trademark notice: Product or corporate names may be trademarks or registered trademarks,

and are used only for identification and explanation without intent to infringe.

UDC 004.42/.49:004.056(075)

ISBN 978-617-05-0554-5
DOI 10.20998/978-617-05-0554-5

© Savchenko V. M., Mnushka O. V., 2025

© NTU “KhPI”, 2025

CONTENTS

Preface . 5

Topic 1. Introduction to the Course . 6

Topic 2. Overview of Secure Programming Methods 10

Topic 3. Memory Corruption and Buffer Overflows 14

Topic 4. Code Injections . 20

Topic 5. Concurrency Issues (Race Conditions) 25

Topic 6. Malware and Social Engineering . 32

Topic 7. Secure Programming Methods in Programming Languages 38

Topic 8. Virtualization and Cloud Applications 45

Topic 9. General Issues in Web Application Security 53

Topic 10. Web Application Security: Cookies, Sessions, and Attacks 59

Topic 11. Mobile Application Security . 65

Topic 12. SSDLC . 72

Topic 13. High-Level Security Programming 76

Topic 14. Reverse Engineering . 80

Topic 15. Software and Game Protection . 84

Topic 16. HMAC and Digital Signatures . 93

List of References . 99

3

APPLIED COMPUTER ENGINEERING
Training specialists in designing websites and web applications,
including their interfaces, involves developing creative site concepts,
creating site designs and page layouts, integrating multimedia objects,
programming functional tools, or integrating them into a content
management system. It also includes optimizing and managing site
materials, testing and maintaining websites, hosting project publications,
3D modeling, and developing software and information for smart objects.
Educational trajectories include: «Web Design and Internet
Programming» and «Engineering of Secure Systems and Networks»

MODERN PROGRAMMING, MOBILE DEVICES AND COMPUTER
GAMES
Training specialists in the development of software, hardware, and
integrated systems in the computer industry, robotics, control, and
process management, as well as for creating computer games, is a
creative and complex process. It demands expertise in programming,
algorithms, hardware, and networking to produce unique and widely
popular solutions. Educational trajectories include: «Programming of
Mobile Devices and Computer Systems» and «Innovation Campus»

12
3

CO
M

PU
TE

R
 E

N
G

IN
EE

R
IN

G
Th

e
pr

og
ra

m

en
co

m
pa

ss
es

th

e
st

ud
y

of

co
m

pu
te

r
ha

rd
w

ar
e

an
d

so
ft

w
ar

e
ar

ch
it

ec
tu

re
, c

om
pu

te
r

ci
rc

ui
tr

y,
 t

he
 d

ev
el

op
m

en
t

of
 lo

ca
l a

nd

gl
ob

al

ne
tw

or
k

co
m

po
ne

nt
s,

co

m
pu

te
r

ga
m

es
,

da
ta

m

in
in

g,

w
eb

de

ve
lo

pm
en

t,
an

d
fr

on
t-

en
d

de
si

gn
,

w
it

h
a

st
ro

ng
 e

m
ph

as
is

 o
n

th
e

m
at

he
m

at
ic

al
 fo

un
da

ti
on

s
of

 in
fo

rm
at

io
n

pr
oc

es
si

ng
.

123 COMPUTER ENGINEERING
This specialty combines software engineering, computer science, and the
engineering of computer components and systems. Computer
engineering is a discipline that requires an in-depth understanding of the
theoretical foundations of information technology, engineering
principles, and computer science.

Кафедра «Комп'ютерна інженерія і програмування» НТУ «ХПІ»
Department of Computer Engineering and Programming NTU «KhPI»

https://web.kpi.kharkov.ua/cep/en

INTRODUCTION

The development of modern software requires not only a profound understanding

of methods for ensuring its quality and efficiency, but also awareness of security issues

at all stages of the life cycle – from design to maintenance. Mastering the principles

of secure programming is an important task for future specialists in the field of

computer engineering, and its successful assimilation largely depends on the student’s

independent work.

The eductional and methodological guide “Modern Technologies of Secure

Programming” has been created to facilitate self-study. It focuses on developing

practical skills for working with scientific publications, professional literature, and

on applying methods, tools, and technologies for secure software development. The

guide covers methods of analyzing vulnerability databases, as well as principles of

coding, hashing, encryption, and the use of digital signatures.

Independent study of this guide enables students to examine in detail the issues

of analyzing common application security threats based on the OWASP Top 10 rating.

This rating compiles generalized research findings on software vulnerabilities in

recent years and is recognized regardless of technology or programming language.

Understanding the mechanisms by which threats emerge and methods to eliminate

them fosters the ability to design secure software in accordance with the Secure

Software Development Life Cycle (SSDLC) principles. Working independently with

vulnerability databases (Common Vulnerabilities and Exposures (CVE)) gives students

experience in searching for, analyzing, and summarizing information about potential

threats to software systems, as well as examining the history of software development.

Additionally, the guide discusses the basics of working with code analysis tools

(YARA, radare2, etc.) and introduces the foundations of cryptography, particularly the

use of cryptographic libraries like OpenSSL, along with the implementation of HMAC

(Hash-Based Message Authentication Code) and electronic digital signatures (EDS).

Independent study of these materials enables students to learn how to implement

hashing and digital signature mechanisms, which form the cornerstone of modern

information security.

5

Topic 1

INTRODUCTION TO THE COURSE

The objective is to become familiar with the basics of secure programming and

gain practical skills in installing and configuring toolchains.

Tasks for Independent Study

1. Install and configure Oracle VirtualBox for working with virtual machines

(create a new virtual machine, select the desired operating system (OS), configure the

network).

2. Install QEMU and run a virtual machine, compare its performance with

VirtualBox (use basic settings).

3. Create a snapshot in VirtualBox or QEMU to enable quick recovery of the

virtual machine’s state.

4. Explore basic commands for managing virtual machines (start, stop, pause,

clone, etc.) in VirtualBox and QEMU.

5. Prepare a test environment: install all necessary tools (compilers, interpreters,

networking utilities) in the virtual machine for upcoming tasks.

Brief Theoretical Background

1. General overview of the course.

2. Cybercrime and cybercriminals.

3. Computer security and technical security.

4. The impact of generative artificial intelligence on secure programming tech-

nologies.

The course on modern secure programming technologies covers the basic princi-

ples and practices related to the development of software that minimizes vulnerabilities

to cyber threats. Software often becomes a target for attacks from cybercriminals,

making it essential to implement security mechanisms at all stages of development.

The importance of a proactive approach to identifying and eliminating potential

vulnerabilities is key to creating reliable software.

The course also examines Software Development Life Cycles (SDLC), which

include steps for implementing security such as risk analysis and vulnerability testing.

Studying examples of attacks helps to avoid similar situations in the future.

The following literature is recommended: [1–9]

6

INTRODUCTION TO THE COURSE TOPIC 1

Cybercrime and Cybercriminals

Cybercrime includes various activities such as unauthorized access to information

systems, theft of confidential data, distribution of malicious software, DDoS attacks

(denial-of-service attacks), and other online crimes. According to the report [10], the

number of cybercrimes continues to grow rapidly. Losses from such crimes in 2022

are estimated to exceed 10 billion dollars, demonstrating the scale of the threats.

Cybercriminals actively exploit vulnerabilities in software, such as outdated

systems or unsecured server configurations. One notable example was the WannaCry

attack in 2017, which exploited a vulnerability in the SMB protocol to spread malware

to thousands of computers in over 150 countries [11].

Secure programming plays a key role in reducing risks associated with cyber-

crime. Proper system design and regular software updates significantly reduce the

likelihood that criminals can exploit vulnerabilities.

Modern cybercriminals use various approaches and techniques, among which

the following can be highlighted:

• Phishing – distributing fake emails or using fake websites to steal user cre-

dentials. According to statistics, almost 1.2% of all sent emails are malicious, which

means 3.4 billion phishing emails are sent daily. It is expected that by 2024, over

33 million records will be stolen, and phishing attacks demanding ransom will occur

every 11 seconds 1;

• Supply chain attacks – hacking software or hardware during the production

process by exploiting trust between the manufacturing company and its clients. A

well-known example is the SolarWinds attack in 2020, which affected thousands of

organizations, including U.S. government agencies [12];

• Exploitation of zero­day vulnerabilities, which have not yet been discovered

by developers and therefore do not have security patches. For instance, the Microsoft

Exchange attack in 2021 exploited several zero-day vulnerabilities to steal confidential

data [13].

Software development with a focus on security helps minimize the risks of

such attacks. Implementing code­level protection, such as input validation, exception

handling, and adherence to the principle of least privilege, significantly reduces system

vulnerabilities.

Computer Security and Technical Security

In English, there are two terms “safety” and “security”, both of which can be

translated as “безпека” in Ukrainian.

Computer security or security refers to a set of measures aimed at protecting

1Astra Security: 81 Phishing Attack Statistics 2024: The Ultimate Insight

7

https://www.getastra.com/blog/security-audit/phishing-attack-statistics/

TOPIC 1 INTRODUCTION TO THE COURSE

information and computer systems from unauthorized access, modification, or theft

of data. The main principles of computer security are known as the CIA triad (Confi­

dentiality, Integrity, Availability):

• Confidentiality ensures that data is accessible only to those who have the right

to access it. This is achieved through data encryption and proper access policies;

• Integrity guarantees that data cannot be altered without permission. Methods

such as hashing and digital signatures allow verifying the integrity of the data;

• Availability ensures that information systems are accessible whenever needed.

Protection against DDoS attacks and server setups with backups help maintain avail-

ability.

Technical security or safety includes hardware and software tools that help protect

systems:

• Network firewalls protect systems from unauthorized network access by filter-

ing incoming and outgoing traffic;

• Antivirus and anti­spyware software detect and remove malicious software;

• Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) help

detect and prevent attacks at early stages.

Specialists in the field of computer engineering, such as hardware and software

developers, should implement these tools and applymodern encryption, authentication,

and access control methods to ensure reliable protection of data and systems.

The Impact of Generative Artificial Intelligence on Secure Programming

Technologies

Generative Artificial Intelligence (AI), especially based on models like GPT­3

and GPT­4, has significant potential in programming due to its ability to quickly solve

typical tasks and automatically generate code, which can significantly accelerate the

development process. However, this AI can also generate code with vulnerabilities.

For example, code generated by GPT­3 and GPT­4.x without proper security measures

may contain vulnerabilities such as SQL injection or buffer overflow.

Moreover, AI can be used to automate attacks, for example:

• Deepfakes can be used to create fake video or audio, which are then employed

in phishing campaigns [14; 15].

• AI can help automatically scan applications for vulnerabilities.

• AI can generate exploits.

Therefore, one of the current challenges in the field of computer science and

cybersecurity is the development of new approaches to software security, taking into

account the capabilities and risks posed by generative AI. Research directions may

include:

• Automated code testing to detect vulnerabilities;

8

INTRODUCTION TO THE COURSE TOPIC 1

• AI models for detecting network attacks, for example, to analyze network

traffic and detect anomalous activity that may indicate an attack;

• Continuous monitoring and training of AI models for real-time updates to

protection systems.

It is worth noting that a potential and serious issue with the use of AI is data

privacy, which manifests in the use of user data to train AI models, as well as possible

access to such data by developers and researchers.

• Most modern AI models, including large language models (such as GPT), need

to be trained on very large datasets, including data collected from the Internet. This

raises serious privacy concerns, as these datasets may contain personal or sensitive

user information. There are numerous examples where AI models have generated

content that included personal user data not intended for public use;

• Personal user data collected during the training of models may be accessible

to developers or researchers, which violates privacy. According to studies [16; 17],

machine models may “remember” fragments of confidential information;

• The terms of use of language models directly address the possibility of using

private data for training. OpenAI, the developer of GPT­4, has a dedicated section

discussing data privacy and security 2.

Thus, generative AI can be not only a powerful tool for developers across various

fields but also a serious threat to cybersecurity and privacy.

Review Questions

1. What is secure programming, and why is it important?

2. How do different stages of the SDLC integrate with security methods?

3. What are the most common types of cybercrime today?

4. How do cybercriminals exploit software vulnerabilities to conduct attacks?

5. What are zero­day vulnerabilities, and how can they be avoided during soft-

ware development?

6. What are the main principles of computer security that should be implemented

during software development?

7. How do technical security measures help reduce cyber threats?

8. How does generative AI affect the process of developing secure software?

9. What are the risks of using generative AI for software development?

10. What security measures can be applied to protect against AI-driven attacks?

2https://openai.com/policies/privacy-policy/

9

https://openai.com/policies/privacy-policy/

Topic 2

OVERVIEWOF SECURE PROGRAMMINGMETHODS

The objective is to study the main approaches, methods, and principles of secure

programming, as well as gain skills in source code analysis.

Tasks for Independent Study

1. Analyze two open­source projects and identify which secure programming

methods are used (refer to GitHub repositories and examine security practices de-

scribed in the README or CONTRIBUTING files).

2. Write a short security guide with five key practices for beginners (e.g., princi-

ple of least privilege, regularly updating dependencies, etc.).

3. Compare static and dynamic code analysis in the form of a summary table

(consider tools, advantages, and disadvantages of both approaches).

4. Develop a training scenario for a developer team on implementing security

methods (training plan, topics, code examples).

5. Create a checklist for code security auditing that can be used before each

release (availability, presence of tests, use of linters, etc.).

Brief Theoretical Background

1. Secure programming methods.

2. Data protection principles and standards.

3. Legal and ethical aspects.

Secure Programming Methods

Secure programming includes several approaches and methods that help reduce

the risks of vulnerabilities and attacks on software. One of the key principles of

secure programming is input validation. All external data must be thoroughly checked

to prevent code injections, such as SQL injections, or other types of attacks. It is

important to consider the possibility of embedding code into commands or queries,

especially for web applications where user input can become a source of malicious

code, and data processing takes place, particularly on the server side.

Another important method is output data filtering. Correct encoding of data

before its use or transmission to external systems reduces the risk of XSS (Cross­Site

Scripting) attacks and other vulnerabilities related to unsafe output data.

10

OVERVIEW OF SECURE PROGRAMMING METHODS TOPIC 2

The use of cryptography is also a fundamental element of secure programming.

Data encryption ensures its confidentiality and integrity, especially during transmis-

sion over the network, provided that modern and reliable encryption algorithms, such

as AES or RSA, are used [18].

In general, the following key secure programming methods are essential for

specialists in the field of computer engineering:

• Input validation;

• Output data encoding;

• Authentication and password management;

• Session management;

• Access control and resource management;

• Use of cryptographic methods, algorithms, and protocols;

• Error handling and logging;

• Data protection;

• Data transmission security;

• Code review and static analysis;

• Code testing, including security testing (pen­testing).

Data Protection Principles and Standards

Secure programming must adhere to clearly defined principles and standards.

For example, the OWASP (Open Web Application Security Project) standard provides

developers with practical recommendations for identifying and mitigating the most

common vulnerabilities in web applications. The OWASP Top 10 list (Table 2.1)

contains the most common threats, such as SQL injections and XSS, and offers recom-

mendations to prevent them [18].

OWASP Top 10 introduced some changes in the 2021 edition (Fig. 2.11). The

2025 Top 10 is expected to be published in the first half of 2025.

Figure 2.1 – Mapping of OWASP Top 10 Categories (2021)

1https://owasp.org/Top10/assets/mapping.png

11

https://owasp.org/Top10/assets/mapping.png

TOPIC 2 OVERVIEW OF SECURE PROGRAMMING METHODS

Таблиця 2.1 – Comparison of OWASP Top 10 for 2017 and 2021

OWASPTop 10 2017 OWASPTop 10 2021

A01. Injections A01. Access Control Failures

A02. Authentication Failures A02. Cryptographic Failures

A03. Sensitive Data Exposure A03. Injections

A04. XML External Entities (XXE) A04. Insecure Design

A05. Broken Access Control A05. Security Misconfiguration

A06. Security Misconfiguration A06. Vulnerable and Outdated Components

A07. Cross-Site Scripting (XSS) A07. Identification and Authentication

A08. Insecure Deserialization A08. Software and Data Integrity

A09. Using Components with Known Vul-

nerabilities

A09. Security Logging andMonitoring Fail-

ures

A10. Insufficient Logging and Monitoring A10. Server-Side Request Forgery (SSRF)

In addition to OWASP, the SEI CERT (Software Engineering Institute’s Com­

puter Emergency Response Team) provides guidelines for secure coding. SEI CERT

develops standards for secure programming in various languages, such as C, C++,

and Java, including the SEI CERT C Coding Standard [19], SEI CERT C++ Coding

Standard [20], and SEI CERT Oracle Coding Standard for Java [21], which pro-

vide rules and recommendations for avoiding common security errors during code

development. These standards cover issues such as memory management, buffer

overflow prevention, file and process handling, exception handling, and more. The

latest versions of these standards can be found on the SEI website [22].

These rules and recommendations, along with other standards such asMITRE

and ISO/IEC TS 17961:2013, are used in static code analyzers like Cppcheck or

clang­tidy, enabling the detection of potential issues at early stages of development.

The implementation of secure coding standards improves code quality, system

security, and reduces the number of vulnerabilities in software [23].

Other important standards include ISO/IEC 27001, which sets requirements for

information security management systems, and PCI DSS (Payment Card Industry

Data Security Standard), which regulates the security of payment card data [24].

Legal and Ethical Aspects

Secure programming also involves important legal and ethical aspects. Laws in

various countries, such as the General Data Protection Regulation (GDPR) in the

European Union, require developers to adhere to strict requirements for protecting

users’ personal data [23].

Developers must not only comply with these laws but also act ethically. Respon-

12

OVERVIEW OF SECURE PROGRAMMING METHODS TOPIC 2

sible behavior includes promptly fixing vulnerabilities and responsibly disclosing

information about them. For example, ethical hacking (or white-hat hacking) helps

improve software security by identifying vulnerabilities before they are exploited.

Review Questions

1. What are the key methods of secure programming?

2. Why is input validation necessary, and how does it affect security?

3. What is output data filtering, and what attacks does it help prevent?

4. What role does cryptography play in ensuring data security?

5. What is the OWASP Top 10, and what threats does it include?

6. What are the main recommendations of SEI CERT for secure programming?

7. How do legal regulations like GDPR affect secure programming?

8. Why are ethical principles important in the context of secure programming?

9. What are the main legal requirements for data protection in different juris-

dictions?

10. How should developers act responsibly when vulnerabilities are discovered?

13

Topic 3

MEMORYCORRUPTIONAND BUFFER OVERFLOWS

The objective is to study vulnerabilities related to buffer overflows and memory

management errors, and to gain practical skills in analyzing software code for security

flaws.

Tasks for Independent Study

1. Find an example of buffer overflow code (in C and C++) and fix it, explaining

where the error was and how to prevent it.

2. Write a program in C and C++ that demonstrates array bounds checking (use

index validation when accessing array elements).

3. Test your code using Valgrind to detect memory leaks and buffer overflows.

4. Explore how ASLR (Address Space Layout Randomization) helps prevent

buffer overflow exploitation (explain the mechanism and its advantages).

5. Create a presentation on the most common memory management errors and

provide recommendations on how to avoid them.

Brief Theoretical Background

1. Memory corruption.

2. Buffer, stack, and heap overflows.

3. Static and dynamic analysis methods.

Memory Corruption

Memory corruption is one of the most severe security vulnerabilities caused

by improper memory management in software. Such vulnerabilities can lead to

unpredictable program crashes or allow attackers to execute attacks, including arbitrary

code execution or privilege escalation. Memory corruption commonly occurs due to

access to memory that was either not correctly allocated or already freed. This leads

to typical vulnerabilities such as buffer overflow, stack overflow, and heap overflow.

These vulnerabilities can be exploited due to flaws in programming libraries or

runtime libraries of operating systems, such as libc or libc++. For example, classic

buffer overflow attacks allow attackers to overwrite memory data, which can result in

the execution of malicious code at the operating system level. Attacks like Return­

Oriented Programming (ROP) or Jump­Oriented Programming (JOP) manipulate the

14

MEMORY CORRUPTIONAND BUFFER OVERFLOWS TOPIC 3

sequence of program instructions to carry out malicious actions, potentially giving

full control over the system.

Memory corruption attacks are among the most dangerous because they allow

attackers to manipulate critical data or alter the program’s execution flow. This makes

the system vulnerable to exploits that can be used for executing privileged code or

leaking confidential data. Many modern security systems, such as Data Execution

Prevention (DEP) and Address Space Layout Randomization (ASLR), were developed

to prevent such attacks. However, bypassing these protections is possible in the case

of complex exploits that combine multiple vulnerabilities.

Buffer, Stack, and Heap Overflow

When a function is called, the stack is used to store additional arguments that do

not fit into the allocated registers (Fig. 3.11). The stack also always stores the return

address, which allows the function to return to the point of the call after it completes.

The stack is aligned to 16 bytes to ensure the correctness of function calls and data

access.

Figure 3.1 – x86_64 Stack (Linux)

Calling convention defines how function arguments are passed and how functions

return values at a low level in programming. InWindows x64 (Microsoft ABI), the

1Eli Bendersky. Stack frame layout on x86-64

15

https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64

TOPIC 3 MEMORY CORRUPTIONAND BUFFER OVERFLOWS

first 4 arguments are passed via the registers RCX, RDX, R8, R9, and the rest are passed

via the stack. Additionally, 32 bytes of “shadow space” are allocated on the stack to

store these registers, even if they are not used. Return values are passed via RAX for

integers and XMM0 for floating-point numbers. The stack is aligned to 16 bytes before

a function call.

Windows x64 (Microsoft ABI)

1. The first 4 integer or pointer arguments are passed via RCX, RDX, R8, R9;

2. Arguments after the 4th are passed via the stack;

3. 32 bytes of “shadow space” are allocated on the stack for the first 4 arguments,

even if they are not used;

4. Return values: RAX for integers and XMM0 for floating-point values;

5. The stack is aligned to 16 bytes before a function call.

Linux x64 (System VABI)

1. The first 6 integer or pointer arguments are passed via RDI, RSI, RDX, RCX, R8,

R9.

2. Arguments after the 6th are passed via the stack.

3. No “shadow space”.

4. Return values: RAX for integers and XMM0 for floating-point values.

5. The stack is also aligned to 16 bytes.

6. In Linux, a 128­bit red zone is used below RSP, which can be utilized for

temporary variables without modifying RSP. It is not used during function calls.

Stack overflow is a common type of vulnerability related to improper memory

management, but it is not directly caused by buffer overflow. Stack overflow occurs

when the amount of data or the number of functions stored in the stack exceeds its

size, which can lead to logic execution errors or security attacks, particularly by

overwriting return pointers (return pointers). This can allow attackers to gain control

over the program’s execution flow.

Buffer overflow is a vulnerability where data written to a buffer exceeds its size,

causing an overwrite of memory outside the allocated space (Fig. 3.22). This can

lead to changes in critical program structures such as variables, pointers, or return

addresses, which can be exploited for attacks such as arbitrary code execution. Such

vulnerabilities typically pose significant security threats, including stack smashing or

heap corruption attacks.

Heap overflow occurs in programming languages like C and C++, which allow

direct memory access. The heap is used for dynamic memory allocation during pro-

gram execution, and improper memory management (e.g., failure to correctly allocate

2Wallarm: What is a Buffer Overflow Attack?

16

https://www.wallarm.com/what/buffer-overflow-attack-definition-types-use-by-hackers-part-1

MEMORY CORRUPTIONAND BUFFER OVERFLOWS TOPIC 3

Figure 3.2 – Stack Overflow

and free dynamic memory) can lead to vulnerabilities such as use of uninitialized

pointers or double free (releasing memory more than once).

Common types of attacks:

• Stack smashing – a method where an attacker alters the stack content via buffer

overflow, potentially leading to the execution of malicious code.

• Heap corruption – the corruption of data integrity in the heap, typically due to

improper dynamic memory management.

• ASLR (Address Space Layout Randomization) and Stack Canaries are protec-

tion mechanisms that reduce the risk of successful stack and buffer overflow exploits.

Stack Overflow Example

Consider a simple C function example that causes a stack overflow because all

local variables and return addresses are typically stored in the stack during function

execution:

void vulnerable_function() {

char buffer[10]; // C-string

gets(buffer); // unsafe function

}

If the user inputs more than 10 characters, this will cause a buffer overflow,

17

TOPIC 3 MEMORY CORRUPTIONAND BUFFER OVERFLOWS

potentially allowing an attacker to overwrite the return pointer and execute malicious

code.

Heap Overflow Example

In the case of heap overflow, an attacker can exploit improper dynamic memory

allocation to alter critical data in the program. For example:

void vulnerable_heap() {

char *buffer1 = (char *)malloc(10);

char *buffer2 = (char *)malloc(10);

strcpy(buffer1, "123456789012345"); // buffer1 overflow

free(buffer1);

}

Here, the strcpy() function writes more data into buffer1 than was allocated,

potentially corrupting other variables or pointers in the heap.

Note that the C and C++ language standards do not ignore the issue of buffer

overflow. Some unsafe functions, such as gets, were removed in the C11 standard

due to their inherent dangers. Other functions have “safe” variants with buffer size

control. For example, instead of strcpy, it is recommended to use strncpy, and instead

of sprintf, snprintf, which allow specifying the maximum buffer size and prevent

memory overwrites beyond the buffer’s boundaries (Table 3.13).

Additionally, some functions have been marked as deprecated. For instance,

in the C++ standard, gets was also marked as deprecated and removed due to the

inability to control the input size. Functions like strcat can also be unsafe, and it is

recommended to use their “safe” variants (strncat) to prevent buffer overflow.

The C11 and C++11 standards significantly improved memory management

security by introducing new safe functions and removing old, unsafe approaches to

string handling.

Static and Dynamic Analysis Methods

To detect and prevent memory corruption and overflows, both static and dynamic

analysis methods are used. Static analysis involves inspecting the program’s source

code without executing it. Static analysis tools can identify potential issues such as

unsafe memory management or the use of unchecked data. This allows errors to be

corrected before they lead to vulnerabilities in real-world environments.

3List depends on standard and compiler version

18

MEMORY CORRUPTIONAND BUFFER OVERFLOWS TOPIC 3

Таблиця 3.1 – Unsafe functions and their safe counterparts inC and C++

Unsafe function ANSI C and C++ Microsoft VS C and C++

strcpy strncpy strcpy_s, strlcpy

strcat strncat strcat_s, strlcat

sprintf snprintf –

vsprintf vsnprintf –

gets fgets gets_s

makepath – _makepath_s

_splitpath – _splitpath_s

scanf – sscanf_s

sscanf – sscanf_s

snscanf – _snscanf_s

strlen – strnlen_s

Dynamic analysis, unlike static analysis, is performed while the program is

running. This method helps to identify issues in real-time, such as improper memory

deallocation or the use of corrupted pointers. Tools like Valgrind or AddressSani­

tizer are widely used to detect memory corruption issues during software testing.

Combining static and dynamic analysis is an effective approach to creating secure

programs.

Review Questions

1. What is memory corruption, and what are its primary causes?

2. How can memory corruption be exploited by attackers to compromise soft-

ware?

3. What is the difference between stack overflow and heap overflow?

4. How can buffer overflow lead to security breaches in a program?

5. What safe memory management practices can prevent memory corruption?

6. What is static analysis, and how does it help in identifying software vulnera-

bilities?

7. What tools are used for static code analysis?

8. What is dynamic analysis, and in what scenarios is it effective?

9. What dynamic analysis tools help detect memory management issues?

10. How does combining static and dynamic analysis enhance software security?

19

Topic 4

CODE INJECTIONS

The objective is to analyze the nature of common code injection attacks (SQL,

XSS, etc.) and methods of their prevention, as well as to gain practical skills in

detecting code injections.

Tasks for Independent Study

1. Write an SQL query using parameterized inputs (Prepared Statement) to

prevent SQL injection attacks.

2. Analyze web server logs (e.g., Apache or Nginx) and identify potential SQL

injection attempts.

3. Fix a vulnerable Python script that is susceptible to command injection

(review how system commands are executed and replace with a safer method).

4. Demonstrate an XSS attack on a test web application (create a simple page

with a form that reflects user input).

5. Develop an input validation filter that blocks suspicious characters and checks

input for validity before processing (use regular expressions, whitelisting, etc.).

Brief Theoretical Background

1. Overview of code injection.

2. SQL injections.

3. Security in scripting languages and shell environments.

Code Injections – General Overview

Code injections are one of the most common and dangerous types of attacks on

software. These attacks occur when an attacker injects malicious code into an input

field that has not been properly secured, and this code is executed by the system. The

most common examples of such attacks are operating system command injections and

SQL injections.

Operating system command injections (Fig. 4.11) allow an attacker to execute

unauthorized commands directly in the operating system, while SQL injections target

databases by executing malicious SQL queries.

1MITRE: CWE-78

20

https://cwe.mitre.org/data/definitions/78.html

CODE INJECTIONS TOPIC 4

Figure 4.1 – OS command injection

An example of an operating system command injection could be a situation

where a web application accepts user input to execute a system command, such as a

ping request:

ping 127.0.0.1

If the input is not properly validated, an attacker may append their own malicious

code to the command:

ping 127.0.0.1; rm -rf /

This would result in the execution of a file deletion command on the server.

SQL Injections

SQL injection is a technique where an attacker adds or modifies SQL queries

via input in web forms or URL parameters, leading to the execution of unauthorized

actions on the database (Fig. 4.22).

2xkcd: Exploits of a Mom

21

https://xkcd.com/327

TOPIC 4 CODE INJECTIONS

Figure 4.2 – SQL Injection

For example, if an SQL query looks like this:

SELECT * FROM users WHERE username = '$username' AND password =

'$password';↪→

An attacker can input the following code into the input field:

' OR '1'='1

This transforms the query into:

SELECT * FROM users WHERE username = '' OR '1'='1' AND password = '';

In this case, the query will return all records from the database because the

condition will always be true. This allows the attacker to bypass authentication and

gain access to confidential data.

To prevent SQL injections, it is essential to use parameterized queries and avoid

directly embedding user input into SQL queries 3. Here is an example of secure SQL

usage in PHP with prepared statements:

$stmt = $pdo->prepare('SELECT * FROM users WHERE username = :username

AND password = :password');↪→

$stmt->execute(['username' => $username, 'password' => $password]);

3OWASP: SQL Injection Prevention Cheat Sheet

22

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

CODE INJECTIONS TOPIC 4

Now we can consider the example shown in Fig. 4.2. Suppose the following

command is used to insert data into a table:

INSERT INTO Students (firstname) VALUES ('Elaine');

If the name is name = 'Robert'); DROP TABLE STUDENTS; -- ' as shown in

Fig. 4.2, the following query will be executed:

INSERT INTO Students (firstname) VALUES ('Robert'); DROP TABLE

STUDENTS; -- '↪→

Which transforms into three SQL commands, resulting in the deletion of the

Students table:

INSERT INTO Students (firstname) VALUES ('Robert');

DROP TABLE Students;

-- ';

Security of Scripting Languages and Command Shells

Scripting languages such as PHP, Python, and JavaScript are often targeted for

code injections due to their flexibility and wide use in web applications. The danger

lies in the ability to execute malicious code when interacting with external data. For

instance, a vulnerability to XSS (Cross­Site Scripting) can arise if unverified user input

is displayed on a webpage.

Command injections through command shells like Bash or PowerShell can also

lead to serious consequences. Attackers can gain access to the system by executing

dangerous commands through vulnerable scripts. One way to protect against this is to

avoid executing external commands directly, use functions to isolate user input, or

eliminate command execution on the server side altogether.

Review Questions

1. What is code injection, and how is it used in attacks on software?

2. How do operating system command injections work? Provide an example.

3. What potential consequences can SQL injections have for databases?

4. How can you protect against SQL injections? What techniques are most

effective?

23

TOPIC 4 CODE INJECTIONS

5. What risks arise when working with scripting languages and command shells?

6. What are Cross­Site Scripting (XSS) attacks, and how are they related to code

injections?

7. How can prepared statements in SQL prevent code injections?

8. What general approaches to script security should be used when interacting

with user input?

9. What methods can be used to protect command shells from injections?

10. How can code injections be detected using static and dynamic analysis?

24

Topic 5

CONCURRENCY ISSUES (RACE CONDITIONS)

The objective is to study threats related to race conditions and ways to prevent

them in multithreaded programs, and to gain practical skills in analyzing concurrent

applications.

Tasks for Independent Study

1. Find a race condition in Java code and fix it using the synchronized keyword

or other synchronization mechanisms.

2. Write an example using mutexes in C, C++, or Python to control access to a

shared resource.

3. Test a multithreaded application (written in C, C++, or Java) using Thread­

Sanitizer1 and analyze the results.

4. Compare race condition prevention approaches in C++ and Python, explain-

ing key differences (e.g., synchronization primitives, GIL in Python, etc.).

5. Create a thread interaction diagram for a complex multithreaded scenario

(e.g., task queue and worker thread coordination).

Brief Theoretical Background

1. General overview of concurrency issues.

2. Methods for preventing race conditions.

3. Consequences of concurrency-related problems.

General Overview of Concurrency Issues

Concurrency issues arise when multiple threads or processes simultaneously

access the same resource (e.g., memory or a file) without proper synchronization.

This can lead to incorrect program behavior and serious vulnerabilities, such as data

corruption or leakage of sensitive information (Table 5.1).

TOCTOU (Time-of-Check to Time-of-Use) Attack

TOCTOU (Time­of­Check to Time­of­Use) is a class of vulnerabilities that arise in

multitasking and multithreaded systems due to a window of time between the resource

1https://github.com/google/sanitizers/wiki/threadsanitizercppmanual

25

https://github.com/google/sanitizers/wiki/threadsanitizercppmanual

TOPIC 5 CONCURRENCY ISSUES (RACE CONDITIONS)

Таблиця 5.1 – Main Vulnerabilities Related to Concurrency Issues

Vulnerability Type Description CWE

Race Conditions Two or more threads or processes try to

modify or access a shared resource (mem-

ory, files, variables) without proper syn-

chronization.

CWE­362

Data Races Two or more threads modify the same

variable or memory region simultaneously

without proper synchronization, leading to

unpredictable results.

CWE­367

Deadlocks Two or more threads or processes block

resources that they are waiting for from

each other, leading to a complete halt of

their operations.

CWE­833

Live Locks A situation where processes continue per-

forming actions that block each other with-

out being able to complete their tasks.

CWE­667

Priority Inversion A lower-priority process holds a resource

needed by a higher-priority process, caus-

ing delays in the system’s performance.

CWE­410

Double­Fetch Data from a resource is read twice, and

an attacker can modify the data between

the operations, leading to unpredictable re-

sults.

CWE­367

Lock Contention Lock contention occurs when multiple

threads compete for the same resource,

causing delays and reduced performance.

CWE­667

Permission Races Two or more processes attempt to mod-

ify or use resources without proper access

rights.

CWE­275

Races with Temporary

Files

Vulnerabilities arise when temporary files

are created and used without proper syn-

chronization.

CWE­377

Directory Position

Race

Arace occurs when directories are changed

between the time of checking and use.

CWE­346

check (time of check) and its use (time of use). This allows an attacker to change

the state of a resource between the check and use, which can lead to undesirable

consequences.

26

CONCURRENCY ISSUES (RACE CONDITIONS) TOPIC 5

TOCTOU Concept:

Time of Check – the moment when a program checks the availability or state of

a resource (file, memory, network connection, etc.) and makes a decision based on

this check. Time of Use – the moment when the program performs an operation on

the resource, assuming that its state has not changed since the check. The Problem –

between these two moments, another process or thread can change the state of the

resource, leading to unintended or dangerous actions.

Imagine a program that checks if a file exists and then opens it for writing:

if (access("somefile.txt", W_OK) == 0) {

// file exists and is writable

}

fd = open("somefile.txt", O_WRONLY);

Between these operations (the check and the open), another process may replace

the file with a symbolic link to another file that the program should not have access

to, which can lead to incorrect data writing.

TOCTOU vulnerabilities can lead to:

• Incorrect access to data;

• Exploiting the system by altering resource states;

• Potential privilege escalation.

Methods for Preventing TOCTOU

1. Atomic Operations. Use system calls that perform both the check and the use

of the resource in a single operation. For example, you can ensure that a file is created

only if it does not exist, avoiding a TOCTOU attack:

fd = open("somefile.txt", O_WRONLY | O_CREAT | O_EXCL);

2. Principle of Least Privilege by restricting access to files and resources.

3. Inter­process Synchronization by locking resources to prevent improper access

between processes or threads.

4. Path Fixation by directly defining file paths (fdstat() is safer than stat()).

This group of vulnerabilities also includes Permission Races, Races with tempo­

rary files, Directory position race, and others (Table 5.2).

Data Races

One of the most common concurrency scenarios is a race condition. It occurs

when two or more threads modify a shared resource simultaneously, and the result

27

TOPIC 5 CONCURRENCY ISSUES (RACE CONDITIONS)

Таблиця 5.2 – Main Vulnerabilities Related to Concurrency Issues

Vulnerability Description

CWE­367: Time­of­check

Time­of­use (TOCTOU)

A file or resource is checked before being used, but is

changed before the use operation.

CWE­362: Concurrent

Execution using Shared Resource

Resources are used simultaneously by multiple threads

without proper synchronization.

CWE­364: Signal Handler Race

Condition

A signal handler is called while a global state is being

modified, potentially causing data corruption or crashes.

CWE­363: Race Condition

Enabling Link Following

A file or directory state is checked before access, but the

resource can be replaced with a link before it is used.

CWE­368: Context Switching

Race Condition

Occurs during context switching between threads, en-

abling attacks on data integrity or confidentiality.

depends on the order in which the threads execute. Since the order is not always

predictable, this can lead to unpredictable results.

Access to a shared variable by multiple threads may lead to a data race if:

1. Access occurs (potentially) simultaneously;

2. At least one access is a write operation.

A data race is a memory-level race condition involving atomic operations. It is

the root cause of many complex bugs in multithreaded programs.

Data races are typically sporadic errors:

• They lead to nondeterministic behavior.

• The incorrect behavior may be very rare.

• Reproducing the error can be challenging.

These approaches are usually applied only in expert library code or OS ker-

nel development. Ordinary application developers should strive to write race-free

programs.

Race Condition Example

Consider a C++ example where two functions access the same variable simulta-

neously:

int shared_resource = 0;

void increment() {

shared_resource++;

}

28

CONCURRENCY ISSUES (RACE CONDITIONS) TOPIC 5

void decrement() {

shared_resource -- ;

}

int main() {

std::thread t1(increment);

std::thread t2(decrement);

t1.join();

t2.join();

printf("%d\n", shared_resource);

}

In this example, the threads simultaneously access the shared_resource variable.

Due to the lack of synchronization, the result can be unpredictable – the value of the

variable may be 0, 1, or -1, depending on the order of execution.

If a race condition occurs in the operating system, attackers can exploit it to

cause incorrect calculations or inconsistent values by:

• Influencing thread scheduling;

• Repeatedly executing a specific action.

Methods for Preventing Race Conditions

Various synchronization methods, such as mutexes, semaphores, or locks, are

used to prevent race conditions. Mutexes ensure that only one thread can access a

resource at a time, while other threads must wait.

Example of Using a Mutex to Prevent Race Conditions

Let’s consider the same example, but with a mutex for synchronizing access to

the shared resource:

#include <mutex>

int shared_resource = 0;

std::mutex mtx;

void increment() {

mtx.lock();

shared_resource++;

29

TOPIC 5 CONCURRENCY ISSUES (RACE CONDITIONS)

mtx.unlock();

}

void decrement() {

mtx.lock();

shared_resource -- ;

mtx.unlock();

}

int main() {

std::thread t1(increment);

std::thread t2(decrement);

t1.join();

t2.join();

printf("%d\n", shared_resource);

}

In this example, the mutex (mtx) ensures that only one thread can modify

shared_resource at any given time. This prevents race conditions and guarantees the

correct result.

Other methods, such as semaphores and read/write locks, can also be used to

address concurrency issues depending on the specific situation. Semaphores provide

limited access to resources, while read/write locks allow multiple threads to read data

simultaneously but only one thread to write.

Consequences of Concurrency Issues

If concurrency issues are not addressed properly, they can lead to serious vul-

nerabilities in software. For example, in multithreaded web servers or databases, the

lack of synchronization may result in incorrect request handling, data loss, or leakage

of sensitive information. Attackers can exploit these vulnerabilities to launch attacks

or gain unauthorized access to resources.

Example of an Attack Exploiting a Race Condition

An attacker may attempt to exploit a file access vulnerability where two threads

simultaneously try to modify the same file:

open("/tmp/file", O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR);

write(fd, buffer, sizeof(buffer));

30

CONCURRENCY ISSUES (RACE CONDITIONS) TOPIC 5

close(fd);

If the attacker can modify the file during these operations, they can trick the

program into working with a different file, potentially leading to data loss or theft.

Review Questions

1. What are race conditions, and how do they occur in software?

2. How can concurrency issues lead to incorrect program behavior?

3. What methods can be used to prevent race conditions?

4. What are mutexes, and how do they help solve race condition issues?

5. How can semaphores be used to synchronize resource access?

6. What are the security consequences of improper concurrency management?

7. How can race conditions be exploited by attackers to compromise software?

8. What other thread synchronization methods can be used to prevent race

conditions?

9. What problems can arise in multithreaded programs due to the lack of proper

synchronization?

10. What analysis tools can be used to detect race conditions in software?

31

Topic 6

MALWAREAND SOCIALENGINEERING

The objective is to become familiar with types of malicious software and social

engineering methods, and to gain practical skills in counteracting these threats.

Tasks for Independent Study

1. Analyze a malware sample using a sandbox (e.g., Any.Run, Cuckoo) and

prepare a report on its behavior. It is recommended to use safe educational samples

such as the EICAR test file or controlled samples from projects like theZoo, strictly in

isolated environments.

2. Write a training scenario for staff on detecting phishing emails, including

tips for verifying senders, links, and attachments.

3. Explore how antivirus software detects malicious files (e.g., signature-based

detection, heuristic analysis, behavioral detection).

4. Create an infographic on the main social engineering techniques (phishing,

pretexting, baiting, tailgating, etc.).

5. Conduct a social engineering attack simulation within your team (with par-

ticipants’ consent) and analyze the outcomes.

Brief Theoretical Background

1. Malware.

2. Programming techniques for malware resistance.

3. Social engineering and its impact on cybersecurity.

4. Defense mechanisms against social engineering.

Malware

Malware is one of the most common tools used by attackers to compromise

systems and networks. It includes viruses, worms, trojans, rootkits, adware, and

spyware. The primary goal of such programs is to exploit vulnerabilities in computer

systems to gain unauthorized access, steal data, or damage resources.

Viruses can spread through infected files or macros in Microsoft Office doc-

uments. Trojan programs disguise themselves as regular applications but actually

grant attackers access to the system. Rootkits can hide the activity of other malicious

programs, providing attackers with prolonged access to the system.

32

MALWAREAND SOCIAL ENGINEERING TOPIC 6

One of the most dangerous types is ransomware. This type of malware locks

access to files or entire systems and demands a ransom for unlocking them. The

virus encrypts user data on local drives, after which the computer is locked, and the

attackers demand a ransom (usually in cryptocurrency) to provide the decryption key,

typically within a limited time frame. If the demands are not met, the data may be

lost permanently. These attacks target both individual users and large corporations,

governments, and other organizations, leading to significant disruptions.

One of the most notable ransomware attacks was the WannaCry attack in 2017,

which affected over 200,000 computers in 150 countries. This virus exploited a vul-

nerability in Windows operating systems to spread rapidly through networks, causing

significant damage to companies and government institutions. Another example is the

NotPetya virus, which attacked corporate networks in Ukraine and spread worldwide,

causing billions of dollars in damage.

Programming Methods for Resilience Against Malicious Code

When designing application architecture, software architects must consider all

potential risks, including cybersecurity threats. Secure programming generally in-

volves adhering to common practices such as:

• proper error and exception handling;

• applying the principle of least privilege;

• using modern and secure libraries and frameworks;

• maintaining quality documentation and code commenting;

• conducting thorough code reviews.

Codebase Analysis and Testing

To ensure a high level of cybersecurity for an IT product, the following types of

analysis are used:

• Integration and functional testing, which checks the interaction between dif-

ferent components of the program and allows for identifying problems related to

integration and program logic;

• Static code analysis, performed before the program is compiled, to detect

common errors like memory leaks, buffer overflows, or failure to follow programming

standards. Specialized tools, such as static analyzers, are used for this purpose;

• Dynamic code analysis, which tests the program during execution, allowing for

an assessment of its actual performance under load, resource usage, and memory leaks.

This analysis also includes code instrumentation and the emulation of cyberattacks to

test the program’s resilience against attacks like SQL Injection, XSS, and CSRF.

To prevent, detect, and timely address vulnerabilities in software, it is important

to follow certain guidelines and standards:

33

TOPIC 6 MALWAREAND SOCIAL ENGINEERING

Adhering to Cybersecurity Standards

The development and maintenance of IT products must comply with international

security standards, including:

• Using development technologies such as:

1. Open Web Application Security Project (OWASP) for web application devel-

opment;

2. Payment Card Industry Data Security Standard (PCI DSS) for electronic

payment systems.

• Establishing processes with cybersecurity in mind:

1. NIST Cybersecurity Framework, general security guidelines from the U.S.

National Institute of Standards and Technology;

2. ISO 27001, an international standard for information security management

that allows organizations to build secure processes;

3. GDPR (General Data Protection Regulation), which sets out regulations for

personal data protection in the European Union.

Adhering to these standards helps mitigate risks and ensure code security in the

face of modern cyber threats.

It is also essential to emphasize the importance of testing to ensure product secu-

rity. Testing must be an ongoing process, regardless of the product’s lifecycle stage.

Testing based on the use of CI/CD1 aims to check for security and fix vulnerabilities

both before and after the product’s release, as threats constantly evolve, and new

vulnerabilities can be found even in well-tested code.

Social Engineering and Its Impact on Cybersecurity

Social engineering is a technique used by attackers to manipulate people into

providing access to confidential information or systems. Instead of attacking the

technical side of a system, attackers may exploit the human factor as a weak point in

security. Common examples of social engineering include phishing, where users are

tricked into revealing passwords or other sensitive information through fake websites

or emails.

Phishing

Over the years, phishing attacks have evolved significantly, and cybercriminals

have developed various methods to exploit it, continuously improving them2:

1. Email phishing, where attackers disguise links in emails to mimic well-known

companies, banks, or the victim’s own company;

1Continuous Integration/Continuous Delivery
2Microsoft: What is phishing?

34

https://www.microsoft.com/uk-ua/security/business/security-101/what-is-phishing

MALWAREAND SOCIAL ENGINEERING TOPIC 6

2. Malware phishing, where malicious software is disguised as safe files, such

as resumes or bank statements in email attachments. Opening such files can harm IT

systems;

3. Spear phishing, which targets specific individuals whose work or personal

data has been pre-collected. This attack may bypass security measures as it is highly

targeted;

4. Whaling targets business executives, celebrities, or others with significant

assets. Attackers carefully analyze the victim and wait for the right moment to steal

credentials or other confidential information;

5. Smishing – phishing through SMS messages, where scammers pose as well-

known service providers like Amazon, Nova Poshta, or Monobank. These messages

often appear very personal, making them especially effective;

6. Vishing, an attack through phone calls where attackers pose as customer

service representatives to trick victims into revealing personal information.

Phishing Attack Example

A user receives an email pretending to be from a bank:

Dear Customer,

Please click on the link below to verify your account information:

http://fakebank.com/login

Thank you,

Your Bank

After following the link, the user lands on a fake website that looks legitimate.

If the user enters their login credentials, they will fall into the hands of the attackers.

Methods to Protect Against Social Engineering

To protect against social engineering, it is crucial to educate users about threats

and attack methods. Additionally, implementing multi-factor authentication compli-

cates the attackers’ ability to gain access even if they have stolen user credentials.

Example of Multi-Factor Authentication

if (user_authenticated && sms_code_verified) {

// Grant access to the system

35

TOPIC 6 MALWAREAND SOCIAL ENGINEERING

}

Even if an attacker obtains the user’s password, they would still need the confir-

mation code sent to the user’s phone.

Cyber Kill Chain Framework

The Cyber Kill Chain framework (developed by Lockheed Martin3) is a model

for detecting and preventing cyber intrusion activities. The model defines the steps an

adversary must take to achieve their goal. The main idea is to help better understand

the roles of the attack and defense parties (Table 6.1).

The following cybersecurity frameworks and models are worth studying:

1. MITREATT&CK (Adversarial Tactics, Techniques, and CommonKnowledge)

– a knowledge base that provides information on the tactics, techniques, and procedures

(TTPs) used by cybercriminals. It is used to analyze threats, assess security, and

develop defensive measures;

2. Diamond Model of Intrusion Analysis – a model of cyberattack analysis that

describes four main components of any attack: adversary, victim, infrastructure, and

methods. The model helps identify connections between these components for better

threat response;

3. OODA Loop (Observe, Orient, Decide, Act) – a decision-making model used

in cybersecurity. It describes the process of observing, orienting, deciding, and acting

when responding to attacks.

4. Purdue Enterprise Reference Architecture (PERA) – an architectural model

for describing the interactions of various levels in industrial networks. It helps design

and secure automation systems at all levels.

5. NIST Cybersecurity Framework – a cybersecurity standard from the National

Institute of Standards and Technology (NIST). The framework includes the stages of

identifying, protecting, detecting, responding, and recovering to manage cybersecurity

risks.

Review Questions

1. What is malware and what are its main types?

2. How do viruses or trojan programs work, and how can they exploit vulnera-

bilities?

3. What programming methods can ensure resilience against malicious code?

4. How can encryption help protect information from attacks?

5. What is social engineering and how is it used in attacks on users?

3https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

36

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

MALWAREAND SOCIAL ENGINEERING TOPIC 6

Таблиця 6.1 – Stages of the Cyber Kill Chain

Stage Description

Reconnaissance Gathering as much information about the target as possi-

ble.

Weaponization Creating a malicious tool, such as a virus or worm.

Delivery Delivering malware to the victim through system vulner-

abilities.

Exploitation Exploiting vulnerabilities to execute malicious code on

the victim’s system.

Installation Installing the malware and spreading it within the envi-

ronment.

Command and Control (C2) Creating a back channel to the attacker’s server.

Actions on Objectives Exfiltrating data, destroying or encrypting it for ransom.

6. What are the most common examples of social engineering attacks?

7. How can phishing be used to steal confidential information?

8. What methods can be used to protect against social engineering?

9. How does multi­factor authentication work and why is it important for secu-

rity?

10. How can users be trained to counter social engineering attacks?

37

Topic 7

SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES

The objective is to study the security features of different programming languages

and to develop skills in analyzing secure programming techniques in those languages.

Tasks for Independent Study

1. Compare built­in security mechanisms in Rust and C++ (e.g., the borrow

checker in Rust, exception handling in C++, etc.).

2. Write Java code using the SecurityManager and explain how it restricts access

to system resources.

3. Use a static code analyzer (e.g., ESLint) to check JavaScript code for common

mistakes and vulnerabilities.

4. Implement error handling in Python using try-except blocks and observe

how it affects the program’s stability.

5. Explore how the Go programming language prevents buffer overflows, fo-

cusing on its memory management features.

Brief Theoretical Background

1. Secure programming practices across different languages:

• C and C++;

• Java;

• Python;

• JavaScript;

• Rust;

• Go.

2. Comparison of approaches to writing secure code.

Overview of Specific Secure ProgrammingMethods for Different Languages

Each programming language has its own characteristics and vulnerabilities,

which means that approaches to ensuring security may differ. In this section, we will

review secure programming methods for languages such as C, C++, Java, Python, and

JavaScript. A comparison of these methods will help to better understand the specifics

of each language and the most effective approaches to prevent vulnerabilities.

38

SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES TOPIC 7

C and C++: Memory Management and Buffer Overflow Protection

C and C++ give programmers low-level memory access, making them powerful

but also vulnerable to memory management errors. One of the biggest problems in

these languages is buffer overflow, which can lead to memory corruption or even

malicious code execution.

The main documents defining secure programming methods in these languages

are the SEI CERT C Coding Standard [19] and SEI CERT C++ Coding Standard [20].

As noted in [20], “the goal …is to develop safe, reliable, and secure systems, for

example, by eliminating undefined behaviors that can lead to unpredictable program

actions and vulnerabilities that attackers could exploit.”

The SEI CERT C++ Coding Standard includes the following groups of rules that

apply to specific features of the C++ programming language:

1. DCL – Declarations and Initialization;

2. EXP – Expressions;

3. INT – Integers;

4. FLP – Floating Point Numbers;

5. ARR – Arrays;

6. STR – Strings;

7. MEM – Memory Management;

8. FIO – Input/Output;

9. ENV – Environment;

10. SIG – Signals;

11. ERR – Error Handling;

12. OBJ – Object-Oriented Programming;

13. CON – Concurrency;

14. MSC – Miscellaneous;

15. API – Application Programming Interface.

Let’s look at an example requirement from the SEI CERT C++ Coding Standard

related to memory management.

MEM53­CPP. Explicitly create and destroy objects when manually managing

object lifecycles. The creation of dynamically allocated objects in C++ occurs in two

stages. The first stage allocates enough memory to store the object, and the second

stage initializes the newly allocated memory block based on the type of object being

created.

This type of error is one of the most common, especially when an object contains

data fields, with resources allocated using new().

Risk Assessment for MEM53-CPP[20]

• Rule: MEM53-CPP

39

TOPIC 7 SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES

• Severity: High

• Likelihood: Likely

• Remediation Cost: Medium

• Priority: P18

• Level: L1

For developers, examples are particularly valuable, as they are divided into two

types: compliant and non-compliant examples, which help better understand the

essence of the rule.

The SEI CERTCCoding Standard contains similar rules and recommendations as

the C++ variant, with a focus on memory management, but with rules and guidelines

tailored to the C language. Here, the distinctions between rules and recommendations

are significant:

• Rules aremandatory requirements thatmust be followed to avoid vulnerabilities

and undefined behavior in the program. These rules can often be automatically checked

by tools, and breaking them has severe consequences for security and program stability.

• Recommendations are advisable practices that improve the quality and security

of the code, though they are not always mandatory. Violating these recommendations

may degrade code quality but does not pose the same critical threat as violating rules.

Both standards for C and C++ are freely available, with the 2016 version being

the most recent.

Java

Java is a language with a managed runtime environment (JVM), making it

more secure in terms of memory management since automatic garbage collection

prevents memory leaks. Java is one of the main programming languages for business

applications, so mistakes in Java programs can have critical consequences for the

user. That’s why the SEI CERT Oracle Coding Standard for Java [21] exists.

The original version was released in 2011, and the current version is available on

the SEI CERT website [22]. Its structure is similar to that of the SEI CERT C Coding

Standard. Rules are also divided into different categories, each covering a particular

aspect of programming. These categories cover topics from resource and memory

management to control flow and secure data handling. The rules are mandatory for

compliance, and violating them can lead to serious vulnerabilities that attackers can

exploit.

Java also has its specific security challenges, due to its widespread use.

Let’s look at an example rule from the Input Validation and Data Sanitization

(IDS) section1.

1SEI: IDS00-J. Prevent SQL injection

40

https://wiki.sei.cmu.edu/confluence/display/java/IDS00-J.+Prevent+SQL+injection

SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES TOPIC 7

IDS00­J. Prevent SQL injection vulnerabilities. SQL injection vulnerabilities

arise in applications where SQL query elements come from untrusted sources. Without

proper security measures, untrusted data can maliciously alter a query, leading to data

leakage or modification. The primary means of preventing SQL injection include data

sanitization and validation, typically implemented through parameterized queries and

stored procedures.

The following code fragment from the SEI CERT Oracle Coding Standard for

Java demonstrates how to prevent SQL injection. A key feature of this method is the

use of set*() methods of the PreparedStatement class to ensure strict type-checking.

This reduces the risk of SQL injection since input data is automatically escaped.

Prepared statements can be used to insert data into a database:

...

String pwd = hashPassword(password);

// Validate username length

if (username.length() > 8) {

// Handle error

}

String sqlString =

"select * from db_user where username=? and password=?";

PreparedStatement stmt = connection.prepareStatement(sqlString);

stmt.setString(1, username);

stmt.setString(2, pwd);

ResultSet rs = stmt.executeQuery();

if (!rs.next()) {

throw new SecurityException("User name or password

incorrect");↪→

}

...

Risk Assessment for IDS00-J [22]:

• Rule: IDS00-J.

• Severity: High.

• Likelihood: Likely.

• Remediation Cost: Medium.

• Priority: P18.

• Level: L1.

41

TOPIC 7 SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES

Python

Similarly to C, C++, and Java, Python and applications built using it, due to

its popularity, can also become targets of attacks. A secure coding standard has

been developed for Python as well [25], under the aegis of the Open Source Security

Foundation (OpenSFF), which continued the work initiated by Ericsson to improve

secure coding practices in Python (for educational purposes). The structure of the

standard is directly based on the CWE Pillar Weaknesses [mitre.org 2023]. The project

is in the development stage and contains only code examples.

Let’s consider an example 2.

CWE­197. Numeric Truncation Error. Ensure predictable results in loops by

using int instead of float as a counter. Floating-point arithmetic can only represent

a finite subset of real numbers in IEEE 754, for example, 0.555... is represented as

0.5555555555555556, which is also discussed in CWE­1339: Insufficient Precision

or Accuracy of Real Numbers.

This error is also relevant for Java (NUM09-J) and C (FLP30-C).

Below are code fragments showing both compliant and non-compliant approaches

when using loops.

""" Non-compliant Code Example """

counter = 0.0

while counter <= 1.0:

if counter == 0.8:

print("we reached 0.8")

break # never going to reach this

counter += 0.1

""" Compliant Code Example """

counter = 0

while counter <= 10:

value = counter / 10

if value == 0.8:

print("we reached 0.8")

break

counter += 1

2OpenSFF: CWE-197: Numeric Truncation Error

42

https://github.com/ossf/wg-best-practices-os-developers/tree/main/docs/Secure-Coding-Guide-for-Python/CWE-664/CWE-197

SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES TOPIC 7

JavaScript

JavaScript is widely used in web applications, which makes it a target for attacks,

particularly cross-site scripting (XSS). XSS occurs when an attacker injects malicious

code into a webpage, which is executed in the user’s browser.

Today, there is a secure coding standard for JavaScript from Checkmarx [26].

The JavaScript Web Application Secure Coding Practices standard is organized into

sections that cover critical security aspects of web development using JavaScript.

These sections include input validation, output encoding, authentication management,

session handling, and error handling. The standard proposes a logical approach to

ensuring security: starting from input validation to secure coding patterns for handling

sensitive information and interacting with external systems.

One of the key focuses of the standard is input validation, which ensures that all

user input is treated as untrusted by default. The importance of distinguishing between

trusted and untrusted data sources is emphasized, along with recommendations for

secure validation practices. This section covers protection against common vulnera-

bilities such as SQL injection and cross­site scripting (XSS), providing appropriate

methods of validation and encoding.

The standard describes the main types of vulnerabilities that occur in web appli-

cations:

• SQL injection: the risk arises from incorporating untrusted data into SQL

queries. To prevent this, it is recommended to use parameterized queries and stored

procedures.

• Cross­site scripting (XSS): to prevent XSS vulnerabilities, output encoding

should be used so that data is safely displayed on pages without executing malicious

scripts.

• NoSQL injection: the best practices for securing NoSQL databases are provided

to protect against NoSQL injection vulnerabilities.

A separate section is dedicated to authentication and proper session management.

The importance of securely storing credentials and following secure password policies

is emphasized. Methods for session management, such as secure cookie handling and

session termination to protect against session hijacking, are also detailed.

The standard also covers cryptographic practices related to using secure algo-

rithms and key management to protect sensitive information. In addition, the standard

emphasizes proper error handling, particularly avoiding exposing system information

through error messages and applying robust logging mechanisms.

Comparison of Approaches to Ensuring Secure Code

• Languages like C and C++ provide the most options for low-level memory

access, but this also makes them the most vulnerable to memory management issues

43

TOPIC 7 SECURE PROGRAMMING METHODS IN PROGRAMMING LANGUAGES

(buffer overflows, memory leaks). Using modern memory management functions and

validating user input is critically important.

• Java is less vulnerable to memory issues due to automatic memory manage-

ment, but it requires careful exception handling and serialization to avoid information

leaks and unauthorized access.

• Python with its dynamic typing is convenient but requires additional caution

when working with libraries to prevent vulnerabilities.

• JavaScript is particularly vulnerable to XSS attacks, so developers must ensure

proper escaping of user input and avoid unsafe constructs that allow the execution of

untrusted code.

Review Questions

1. What are the main security issues when working with C and C++?

2. How does Java handle memory, and what security methods should be consid-

ered?

3. Why is using eval in Python dangerous, and how can it be avoided?

4. What are XSS attacks in JavaScript, and how can they be prevented?

5. How can parameterized queries help avoid SQL injection?

6. How can serialization in Java lead to vulnerabilities, and how can this be

avoided?

7. Why is memory management important in C and C++, and what methods

can be used to prevent memory leaks?

8. What are the advantages and disadvantages of using automatic garbage col-

lection in Java?

9. How can security be ensured when working with user input in Python?

10. What authentication and authorization methods can be used to protect cloud

applications?

11. What risks arise from using unsafe functions in JavaScript, and how can

they be avoided?

44

Topic 8

VIRTUALIZATIONAND CLOUDAPPLICATIONS

The objective is to become familiar with security issues in cloud technologies

and virtualization, and to develop practical skills using tools for vulnerability analysis.

Tasks for Independent Study

1. Set up an isolated environment using Docker for application testing (create a

Dockerfile, use Docker Compose, and build an image).

2. Analyze security risks in cloud infrastructure (AWS or Azure) and compile a

list of possible attack vectors.

3. Explore access control policies for virtual machines in VMware using role-

based access control (RBAC).

4. Perform a penetration test of a cloud application using OWASP ZAP and

document the discovered vulnerabilities.

5. Compare the security of Docker containers and virtual machines, focusing

on isolation levels and hypervisors.

Brief Theoretical Background

1. Virtual machines and their security mechanisms.

2. Process isolation and permissions as protection methods.

3. Cloud application architecture.

4. Data privacy issues in cloud services.

Virtual Machines and Their Security Measures

Virtualization is a technology used to create virtual representations of servers,

storage, networks, and other physical machines (Table 8.1, Figure 8.1). Virtual soft-

ware simulates the functions of physical hardware to run multiple virtual machines

on a single physical machine simultaneously. The use of virtualization allows modern

companies to optimize their computing resources, including transitioning to full use

of cloud services. With virtualization in the form of cloud services, companies can

completely abandon the use of physical servers, simplifying infrastructure mainte-

nance [27].

Virtual Machines (VM) are tools for creating isolated execution environments

on a single physical computer. They allow multiple operating systems (guest OS)

45

TOPIC 8 VIRTUALIZATIONAND CLOUDAPPLICATIONS

Таблиця 8.1 – Types of Virtualization

Type of Virtualization

Brief Description

Application Virtualiza-

tioz

Allows running applications in isolated environments, inde-

pendent of the OS or hardware.

Network Virtualization Creating virtual network infrastructures based on physical

networks for flexible traffic management.

Desktop Virtualization Allows users to access remote desktops from any device.

Storage Virtualization Combines physical storage resources into virtual ones to sim-

plify data management.

Server Virtualization Enables running multiple virtual servers on a single physical

server for increased efficiency.

Data Virtualization Allows access to data regardless of its physical location or

format.

to run simultaneously on a single server (host OS). Each guest OS operates in its

own isolated environment, provided by a hypervisor. Virtualization offers certain

security advantages, as the isolation between virtual machines prevents one system

from interfering with another’s operation (Fig. 8.1).

Figure 8.1 – Virtualization

Technical aspects of isolation include using different levels of virtualization,

such as type 1 hypervisors (bare­metal) and type 2 hypervisors (running on top of the

host operating system). Type 1 hypervisors, like VMware ESXi orMicrosoft Hyper­V,

provide more efficient isolation and performance due to direct access to hardware. In

contrast, type 2 hypervisors, such as VirtualBox or VMware Workstation, run on top

46

VIRTUALIZATIONAND CLOUDAPPLICATIONS TOPIC 8

of the host OS, which can introduce additional overhead.

Additionally, hardware virtualization supported by modern processors, such

as Intel VT-x or AMD-V, provides an even higher level of security and isolation

between virtual machines, minimizing the risk of escaping the isolated environment

(VM escape).

Key security measures for virtual machines include:

• Hypervisor security, including protection against breakout attacks.

• Isolation, segmentation, and micro-segmentation of resources, ensuring that

each VM uses a specific portion of processor time, memory, and other resources,

making direct access between VMs impossible.

• Network security through the use of intrusion detection (IDS) and intrusion

prevention systems (IPS).

• Secure data storage and recovery mechanisms.

• Regular updates of security patches.

These methods ensure the fine-tuning and administration of security in virtual

environments and their stable operation.

Process Isolation and Memory Management in Protected Mode

Process isolation is a fundamental element of ensuring security both in virtualized

environments and on physical servers. In operating systems, each process runs in its

own address space, protecting it from unauthorized access by other processes. This

means that each process does not have access to the memory of other processes, and

access to hardware resources is strictly controlled.

Process isolation is supported both at the hardware and software levels. Modern

processors have multiple protection rings, providing processes with different levels

of privileges. For example, in x86 architecture processors, there are four rings:

• Ring 0 – the most privileged level, where the operating system kernel runs.

This level has full access to all hardware resources.

• Rings 1 and 2 – used for drivers and services with intermediate privilege levels.

• Ring 3 – designated for unprivileged user processes, which do not have direct

access to hardware and can interact with resources only through system calls.

Memory Management

To implement process isolation in operating systems, technologies such as virtual

memory are used. Virtual memory allows each process to have its own virtual address

space, mapped to physical memory using page tables. This scheme protects one

process’s memory from being accessed by other processes and allows for efficient

use of the available physical memory.

47

TOPIC 8 VIRTUALIZATIONAND CLOUDAPPLICATIONS

In protected mode, supported by most modern x86-64 architecture processors, op-

erating systems have full control over memory allocation and management. Processes

execute in isolated environments, and access to critical resources (e.g., input/output

devices or system resources) is only performed through system calls to the OS kernel.

Processes in protected mode run with different privilege levels, regulated through

protection rings. This provides reliable isolation between privileged and unprivileged

processes. For example, if a user process requires access to privileged resources, it

must invoke the appropriate kernel function operating at ring 0, ensuring controlled

access.

In the context of virtualization, such as with hypervisors and containers (e.g.,

Docker), this isolation mechanism is complemented by additional levels of resource

allocation at the hardware level. Containers enable the execution of isolated processes

with their own system resources, such as file systems and network interfaces, providing

an extra level of security.

In addition to isolation, correctly setting permissions for users and processes is

crucial to avoid privilege escalation.

Methods for ensuring isolation include:

• Containers (e.g., Docker) provide an isolated environment that allows each

container to operate independently of others. Containers also ensure a consistent

environment and a ready set of tools for the developer.

• Application virtualization, such as VMware ThinApp, Turbo Studio (formerly

Spoon Studio and Xenocode Studio) on Windows, and AppImage on Linux. These

applications run in a container but appear as regular programs and do not require

installation.

• Access Control Lists (ACLs) are used to set permissions for files and processes.

This ensures that only authorized users can access specific resources.

Despite the advantages of virtualization, this technology is also constantly under

attack. For example, Table 8.2 lists some typical vulnerabilities of various hypervisors

over recent years.

Cloud Application Architecture

Cloud applications and services can be built on multiple levels, which signif-

icantly impacts the capabilities of such applications as well as the qualifications of

the application or service user. At the lowest, physical level (Physical layer), real

hardware is used, including servers, data storage, network infrastructure, etc. At the

next, infrastructure level (Infrastructure layer), basic computing resources necessary

for cloud application functionality are provided, such as the number of processors,

memory capacity, and disk space. At the platform level (Platform layer), a ready-

to-deploy system serves as the foundation for development, such as a configured

48

VIRTUALIZATIONAND CLOUDAPPLICATIONS TOPIC 8

Таблиця 8.2 – Virtualization Software Vulnerabilities

CVE Product Description

CVE­2024­

43575

Hyper­V Denial of Service (DoS) vulnerability in Microsoft Hyper­V,

which can cause a system crash due to specially crafted requests.

CVE­2023­

21990

Virtual­

Box

Vulnerability in Oracle VirtualBox, allowing a privileged local

user to compromise VirtualBox, potentially leading to full control

over the system.

CVE­2022­

39423

Virtual­

Box

Vulnerability in VirtualBox (versions up to 6.1.38), allowing

unauthorized access to data or full system takeover.

CVE­2021­

28476

Hyper­V Critical vulnerability in Hyper­V, enabling remote attackers to

execute arbitrary code through the vmswitch component.

CVE­2022­

23825

Hyper­V Speculative execution vulnerability (similar to Spectre) that may

lead to information leakage in Hyper­V virtual machines.

CVE­2023­

2085

Virtual­

Box

Vulnerability in VirtualBox, allowing a VM escape and access

to the host system.

CVE­2022­

21900

Hyper­V Vulnerability in Hyper­V, allowing security bypass and data

leakage between virtual machines.

CVE­2023­

21982

Virtual­

Box

Vulnerability in VirtualBox, allowing security restrictions to be

bypassed and unauthorized access to the host system from the

guest OS.

CVE­2020­

4006

VMware Remote code execution vulnerability in VMware ESXi, allowing

an attacker to execute arbitrary commands via the OpenSLP

service.

CVE­2022­

29900

Hyper­V Vulnerability related to speculative execution (RETbleed), po-

tentially leading to information leakage through side-channel

attacks.

operating system with installed libraries and frameworks for developers. Finally,

at the highest level – the application layer (Application layer) – user applications

operate.

It should be noted that cloud computing architecture is complex and includes

not only the services we will discuss below but also many technical implementation

details (Fig. 8.2, [28]).

Platforms can be classified based on the service delivery model:

• IaaS (Infrastructure as a Service) – provides basic computing resources. Ex-

amples of such platforms include Amazon Web Services (AWS) by Amazon, Microsoft

Azure by Microsoft, and Google Cloud Platform by Google.

• PaaS (Platform as a Service) – creates an environment for software develop-

ment and management. Examples of PaaS platforms include AWS Elastic Beanstalk

49

TOPIC 8 VIRTUALIZATIONAND CLOUDAPPLICATIONS

by Amazon, Azure App Service by Microsoft, and Google App Engine by Google.

• SaaS (Software as a Service) – provides ready-to-use applications that can

be used without the need for installation or management, such asMicrosoft 365 and

Google Workspace.

It is worth noting that the provided list of services is not exhaustive – there is a

trend today to move most services to the cloud.

Cloud Applications (SaaS): Multi-layered Architecture and Security

Cloud applications (SaaS) are typically built using a multi-layered architec-

ture that includes the frontend (user interface), backend (data processing servers),

databases, and network resources. The main element of security in cloud applica-

tions is a clear division of roles and permissions, as well as the provision of proper

authentication and encryption.

A typical architecture of SaaS cloud applications:

• Frontend – the interface through which the user interacts with the cloud appli-

cation, usually via a web browser or mobile app. Frontend security is ensured through

the use of TLS (Transport Layer Security) to protect traffic.

• Backend – servers that process user requests, manage business logic, and access

databases. Backend security involves access control, authentication, and the use of

isolated environments for code execution.

• Databases – store users’ sensitive data. Data should be encrypted both at rest

and in transit.

Example Architecture on AWS

On the AWS platform, a cloud application may use an Elastic Load Balancer

to distribute traffic among EC2 servers, Amazon RDS for data storage, and S3 for

static files. Each component is isolated and has its own security policies to ensure an

appropriate level of protection.

Data Privacy Issues on Cloud Services

One of the main challenges of using cloud services is ensuring the privacy and

security of data. User data may be stored on remote servers located in different parts

of the world, raising questions about who has access to this data and how it can be

protected.

Key privacy issues include:

• Control over data in the cloud environment is entrusted to the cloud service

provider, which may pose risks of unauthorized access.

• Encryption of data both during transmission (TLS) and at rest (AES) can ensure

data confidentiality.

50

VIRTUALIZATIONAND CLOUDAPPLICATIONS TOPIC 8

Figure 8.2 – NIST Cloud Computing Reference Architecture [28]

• Different countries have specific laws regarding the processing and storage of

personal data, so cloud service providers must comply with standards such as GDPR.

Example of Data Encryption on AWS

On AWS, KMS (Key Management Service) can be used to encrypt sensitive data:

aws kms encrypt -- key-id alias/my-key -- plaintext fileb://data.txt

-- output text -- query CiphertextBlob↪→

This example shows how to encrypt a file using keys stored in KMS. This helps

protect the data even in the case of unauthorized access to physical media.

Review Questions

1. What are virtual machines, and how do they help ensure security?

2. What are the advantages and disadvantages of process isolation compared to

virtual machines?

3. What are the main components of a typical cloud application architecture,

and how do they interact?

4. What privacy issues arise when using cloud services?

51

TOPIC 8 VIRTUALIZATIONAND CLOUDAPPLICATIONS

5. How does data encryption help protect confidential information in the cloud?

6. What technologies can be used for data encryption on cloud platforms?

7. What are the main authentication methods used in cloud applications?

8. What are the advantages and risks of using containers compared to virtual

machines?

9. How can cloud applications be made compliant with regulatory requirements

(e.g., GDPR)?

10. How can isolation and security between virtual machines be configured on

a cloud platform?

52

Topic 9

GENERAL ISSUES INWEBAPPLICATION SECURITY

The objective is to study common web application vulnerabilities and methods

for their mitigation, and to gain practical skills in analyzing web security issues.

Tasks for Independent Study

1. Configure HTTPS for a local web server using Let’s Encrypt. For example,

use the Certbot utility to automatically obtain and renew a TLS certificate.

2. Test a web application for vulnerabilities according to the OWASP Top 10.

Perform testing for common threats such as SQL Injection (SQLi), Cross-Site Scripting

(XSS), Cross-Site Request Forgery (CSRF), etc. Prepare a report with identified issues

and mitigation recommendations.

3. Implement CORS (Cross­Origin Resource Sharing) policies for your API.

Configure appropriate headers, including Access­Control­Allow­Origin, Access­

Control­Allow­Methods, Access­Control­Allow­Headers, etc.

4. Analyze the security headers of a website. Check for the presence and cor-

rectness of headers such as Content­Security­Policy, X­Frame­Options, X­Content­

Type­Options, and others. Suggest improvements based on current security best

practices.

5. Write a database backup script for a web application. Automate the backup

process using a Bash or Python script or a suitable tool. Ensure daily backups with

integrity checks and recovery capability.

Brief Theoretical Background

1. Web development platforms and their security features.

2. The HTTP protocol and its secure use.

3. Forms and protection against attacks.

4. Client-side and server-side threats.

5. Methods for preventing security risks.

Web Development Platforms and Methods for Securing Them

Web development involves using platforms and frameworks such as Django

(Python), Spring (Java), Express (Node.js), and Laravel (PHP). Regardless of the

53

TOPIC 9 GENERAL ISSUES IN WEBAPPLICATION SECURITY

platform chosen, the key elements of security include user authentication, data en-

cryption, and protection against common attacks such as SQL injections and XSS.

Most modern frameworks have built-in security features, such as automatic CSRF

protection and support for parameterized SQL queries to prevent injections.

The main sources of information on security threats are OWASP Top 10 (Ta-

ble 2.1), MITRE Common Weakness Enumeration (CWE) [29], MITRE CVE Pro­

gram [30], etc. Web applications are constantly under attack, as evidenced by the data

in Table 9.1, which lists some selected vulnerabilities.

Таблиця 9.1 – Web Framework Vulnerabilities

CVE Framework Description

CVE­2023­

37979

Ninja Forms (Word­

Press)

Cross-Site Scripting (XSS) vulnerability in

the Ninja Forms plugin (≤ 3.6.26), allowing

JavaScript injection in the frontend, potentially

compromising the site.

CVE­2023­

28708

Apache Tomcat Session cookies may be exposed over insecure

connections if the secure flag is not set while using

the X-Forwarded-Proto header.

CVE­2023­

29450

Zabbix Zabbix (≤ 6.4.1) allows unauthorized access to

confidential information by processing JavaScript

before authentication.

CVE­2022­

47148

WooCommerce (Word­

Press)

CSRF vulnerability in theWooCommerce PDF In­

voices & Packing Slips plugin (≤ 3.2.6), allowing

unauthorized modification of user data.

CVE­2023­

3247

PHP SOAP Digest Authentication in PHP (≤ 8.1.20)

may leak uninitialized memory between the client

and the server.

CVE­2023­

3824

PHP Buffer overflow when parsing PHAR files, which

may lead to memory corruption or arbitrary code

execution.

CVE­2022­

41040

Microsoft Exchange SSRF vulnerability inMicrosoft Exchange that can

be chained to achieve remote PowerShell execu-

tion.

CVE­2022­

41082

Microsoft Exchange RCE vulnerability inMicrosoft Exchange, exploit-

ing ProxyNotShell to execute PowerShell com-

mands remotely.

CVE­2023­

3823

PHP Improper global state handling in libxml can cause

leakage of configuration data across PHPmodules

in the same process.

54

GENERAL ISSUES IN WEBAPPLICATION SECURITY TOPIC 9

The development process must account for known security issues and adhere to

secure development and deployment practices throughout the entire software lifecycle,

such as by following the Secure Development Lifecycle (SDLC).

Ensuring the security of web applications requires the use of tools to detect and

eliminate vulnerabilities. Static Application Security Testing (SAST) tools analyze the

source code to identify issues during development. Dynamic tools (DAST), such as

OWASP ZAP, simulate real-world attacks to test applications in real-time. Web Appli­

cation Firewalls (WAF), such as Cloudflare WAF, provide protection against network

threats, while tools for managing SSL/TLS certificates simplify traffic encryption,

ensuring confidentiality.

It is essential to regularly update software, including third-party libraries. Updates

contain patches to fix known vulnerabilities.

Using strong passwords and two-factor authentication is important for account

protection. Server security should include firewalls, intrusion detection systems (IDS),

and Web Application Firewalls (WAF).

To maintain security relevance, one should constantly monitor for new cyber

threats and vulnerabilities using appropriate resources and tools.

The HTTP Protocol and Its Secure Use

HTTP (Hypertext Transfer Protocol) is the basic protocol for data transmission

in web applications. However, it does not provide data encryption. Using HTTPS

(HTTP Secure) with SSL/TLS encryption is mandatory to protect sensitive information

during transmission, preventing Man­in­the­Middle attacks.

HTTPGET and POST in Terms of Security

HTTP GET and POST requests have important security differences. The GET

request transmits data via the URL, making it insecure for sensitive information since

the URL can be stored in the browser history or transmitted in referrers. GET requests

also have limitations on the amount of data that can be sent. For example:

GET /search?q=keyword HTTP/1.1

The POST request uses the request body to transmit data, making it more suitable

for sensitive data such as passwords or user information, as the data does not appear

in the URL. Here is an example of a POST request:

POST /login HTTP/1.1

55

TOPIC 9 GENERAL ISSUES IN WEBAPPLICATION SECURITY

Host: example.com

Content-Type: application/x-www-form-urlencoded

username=user&password=pass

Security issues with GET:

• Data is transmitted via the URL and may be stored in the browser history.

• Data may be accessible through referrers or server logs.

• There are limitations on the size of the transmitted data.

Security issues with POST:

• Although data is not stored in the URL, it can still be intercepted if HTTPS is

not used.

• CSRF attacks are possible, so CSRF tokens should be used for protection.

It should be noted that using HTTPS for request encryption is mandatory for both

methods. It is also important to implement input validation and CSRF protection.

Configuring HTTPS in Apache

<VirtualHost *:443>

ServerName example.com

SSLEngine on

SSLCertificateFile /etc/ssl/certs/example.com.crt

SSLCertificateKeyFile /etc/ssl/private/example.com.key

</VirtualHost>

Base64 encoding is widely used in web development and cybersecurity to convert

binary data into a text format. This enables the safe transmission of data over text-

based protocols such as HTTP. Base64 is often used to encode images, files, and

other binary information in formats like JSON, HTML, and emails to prevent data

corruption during transmission.

Non-Latin Characters in URLs and Phishing

Encoding non-Latin characters in URLs using UTF­8 and percent-encoding

(for example, encoding the Cyrillic letter “к” as %D0%BA) allows the transmission of

characters through systems that do not support them directly. However, this can also be

exploited for phishing attacks. Attackers can create URLs with non-Latin characters

that look similar to legitimate sites (e.g., using the Cyrillic letter “а” instead of the

Latin letter “a”) to deceive users and lure them to malicious resources. To protect

against this, users should inspect URLs before clicking and use antivirus software.

56

GENERAL ISSUES IN WEBAPPLICATION SECURITY TOPIC 9

Forms and Their Protection Against Attacks

Forms are a key element of user interaction with web applications, making their

protection critical. The main threats are SQL injection, XSS, and CSRF. To ensure

security, it is necessary to:

• Validate all input data.

• Protect against CSRF using tokens.

• Escape input data to prevent XSS.

Protection Example in Django

Django provides automatic CSRF protection through built-in mechanisms:

from django.views.decorators.csrf import csrf_protect

@csrf_protect

def my_view(request):

return HttpResponse('Protected page')

XSS Protection Example in PHP

<?php

function escape($input) {

return htmlspecialchars($input, ENT_QUOTES, 'UTF-8');

}

?>

<form method="post" action="submit.php">

<input type="text" name="username" value="<?php echo

escape($_POST['username']); ?>">↪→

<input type="submit" value="Submit">

</form>

Threats on the Client and Server Sides

The main threats on the client side are XSS, phishing, and untrusted scripts. To

protect against these, use Content Security Policies (CSP) and avoid dynamically

generating HTML without proper validation.

The main threats on the server side include SQL injection, file attacks, and

exploitation of database vulnerabilities. Parameterized queries and access control

restrictions help protect servers.

57

TOPIC 9 GENERAL ISSUES IN WEBAPPLICATION SECURITY

Example of a Parameterized SQLQuery in PHP

$stmt = $pdo->prepare('SELECT * FROM users WHERE username =

:username');↪→

$stmt->execute(['username' => $username]);

Methods for Avoiding Threats

To avoid common threats on both the client and server sides, the following

methods should be used:

• Use HTTPS to encrypt transmitted data.

• Protect against CSRF using tokens.

• Use parameterized SQL queries to prevent SQL injection.

• Regularly update frameworks and libraries to eliminate vulnerabilities.

• Use password hashing (e.g., bcrypt, Argon2) and multi-factor authentication.

Review Questions

1. What are the main security threats on web platforms like Django or Spring?

2. How does HTTPS ensure data security in web applications?

3. What are CSRF tokens, and how do they help protect web forms?

4. How do XSS attacks work, and what client-side protection methods can be

used?

5. What methods can be applied to secure server databases from SQL injection?

6. How can web forms be protected from malicious user inputs?

7. What server security measures should be implemented to prevent unauthorized

access?

8. What authentication methods can help increase web application security?

9. How does regular framework updating help ensure web application security?

10. How does multi-factor authentication help prevent unauthorized access to

web applications?

58

Topic 10

WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS

The objective is to study authentication mechanisms, cookies, sessions, and

related attacks, and to gain practical skills in identifying and mitigating session

management vulnerabilities.

Tasks for Independent Study

1. Configure secure cookies using the HttpOnly and Secure flags and explain

their advantages.

2. Identify vulnerable sessions in a web application using Burp Suite (e.g., check

for session ID reuse and predictability).

3. Implement CSRF tokens in a login form and verify that the protection works.

4. Perform a session hijacking attack in a test environment (explain how the

attack works and how to defend against it).

5. Explore how JWT (JSON Web Tokens) enhances session security compared to

traditional cookie-based sessions.

Brief Theoretical Background

1. Cookies and sessions: fundamentals and security.

2. Cross­Site Request Forgery (CSRF) attacks.

3. XML External Entity (XXE) attacks.

4. Redirection and its security implications.

Cookies and Sessions: Basic Concepts and Security

Cookies are small text files stored in the user’s browser that contain information

used for authentication, preferences, or tracking activity. Sessions are a mechanism

that allows the server to identify the user across multiple requests. Cookies are often

used to store session identifiers.

Google plans to gradually phase out third-party cookies in its Chrome browser

as part of the Privacy Sandbox initiative. The primary goal is to protect users’ privacy

and give them more control over how their data is used. The phase-out will start in

2024. While third-party cookies will be phased out, first­party cookies will remain

active to support internal website functions such as maintaining sessions and user

preferences. Additionally, Google is developing new technologies, such as FLoC

59

TOPIC 10 WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS

(Federated Learning of Cohorts) and Topics API, to support advertising without

compromising user privacy [31–33].

The main security issues related to cookies and sessions include:

• Session Hijacking – Attackers can steal session identifiers and gain access to

the user’s account.

• Insecure Cookies –Unprotected cookies can be transmitted over an unencrypted

connection or used for malicious purposes.

Example of Secure Cookie Configuration in PHP

setcookie('session_id', $sessionId, [

'secure' => true, // HTTPS only

'httponly' => true, // Not accessible via JavaScript

'samesite' => 'Strict' // Prevents CSRF

]);

This example shows how to configure cookies for security: the secure, httponly,

and samesite attributes help prevent cookie-related attacks.

In terms of cybersecurity, using cookies can compromise the security of web

applications:

• CVE­2023­26136: Vulnerability in the tough-cookie package allows “Proto-

type Pollution” through improper handling of cookies when rejectPublicSuffixes=false.

This may enable attackers to manipulate objects in the system, leading to unpredictable

consequences during code execution on the server.

• CVE­2023­46218: Vulnerability in curl allows setting “super-cookies” using

mixed uppercase and lowercase letters in the domain. This may result in cookies

being transmitted to unrelated sites and domains, creating serious security issues.

• CWE­539: Use of Persistent Cookies Containing Sensitive Information: Vul-

nerability related to storing sensitive information in persistent cookies, which may

include session identifiers or even passwords, leading to data leakage if the cookies

are intercepted or compromised.

• CWE­1275: Sensitive Cookie with Improper SameSite Attribute: Vulnerability

associated with improper configuration of the SameSite attribute, allowing CSRF

attacks. If the SameSite attribute is not configured correctly, cookies may be used to

send malicious requests on behalf of the user.

CSRF (Cross-Site Request Forgery) Attacks

CWE­352: Cross­Site Request Forgery (CSRF). If a web server is designed to

accept client requests without a mechanism for verifying whether the request was

60

WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS TOPIC 10

intentional, an attacker may trick a client into unintentionally sending a request to the

web server that will be processed as authentic. This can be done via URLs, image

loading, XMLHttpRequest, etc., potentially leading to data leakage or unintended code

execution1.

Thus, CSRF is an attack where an attacker tricks a user into performing unwanted

actions on a website where the user is already authenticated. For example, an attacker

may create a fake form that submits a password change request without direct access

to the user’s account.

CSRFAttack Example

<form action="http://victim.com/change-password" method="POST">

<input type="hidden" name="password" value="newpassword">

<input type="submit" value="Submit">

</form>

A user who is already authenticated on victim.com might accidentally click this

link, and their password would be changed to newpassword if the site is not protected

against CSRF.

CSRF Protection Methods

• Use CSRF tokens.

• Configure the SameSite attribute for cookies.

• Check HTTP headers to detect suspicious requests.

Example of CSRF Protection in PHP

if ($_POST['csrf_token'] !== $_SESSION['csrf_token']) {

die('CSRF attack detected!');

}

This code checks for the presence of a CSRF token in the request and compares

it to the token stored in the session.

1https://cwe.mitre.org/data/definitions/352.html

61

https://cwe.mitre.org/data/definitions/352.html

TOPIC 10 WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS

XXE (XMLExternal Entity) Attacks

CWE­611: Improper Restriction of XML External Entity Reference. XML docu-

ments may optionally contain a Document Type Definition (DTD) that allows defining

XML entities. An entity can be defined by specifying a substitution string in the form

of a URI. The XML parser may access the content of this URI and insert it back into

the XML document for further processing2.

An attacker may use an XML file with an external entity pointing to a URI

like file:// to force the application to access a local file’s content. For instance,

the URI file:///c:/winnt/win.ini may refer to a configuration file in Windows,

or file:///etc/passwd may refer to a password file in Unix. It is also possible to

use URIs of other protocols, such as http://, to send requests to remote servers,

bypassing restrictions or concealing the attack source. The content of such files may

be inadvertently displayed in the application, revealing sensitive information.

Vulnerable XMLExample

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

In this example, the XML document attempts to access the /etc/passwd file,

potentially leading to information leakage.

Protection Against XXEAttacks

Disabling external entities in XML parsers and using secure libraries for XML

processing are key methods to protect against such vulnerabilities.

Example of XXE Protection in Java

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setFeature("http://apache.org/xml/features/disallow-doctype-decl",

true);↪→

2https://cwe.mitre.org/data/definitions/611.html

62

https://cwe.mitre.org/data/definitions/611.html

WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS TOPIC 10

This code disables the processing of external entities in XML documents, pro-

tecting the system from XXE attacks.

Redirects and Their Security

Redirects are a common feature of web applications that can be used to direct

users to other pages or sites. However, if redirects are not properly controlled, attackers

can exploit them for phishing attacks or to redirect users to malicious websites.

CWE­601: URL Redirection to Untrusted Site (’Open Redirect’), refers to a

vulnerability where a web application accepts a user-supplied URL and uses it for

redirection without proper validation. This can lead to phishing attacks, where an

attacker manipulates the URL to trick users into visiting a malicious site that appears

legitimate but steals their data or executes harmful code3.

Example of Vulnerable Redirect

header('Location: ' . $_GET['url']);

This code redirects the user to any URL specified in the request, which can be

exploited for an attack.

Protection Against Unsafe Redirects

• Validate URLs before performing a redirect.

• Use a whitelist of allowed safe URLs.

Example of Safe Redirect

$allowed_urls = ['home.php', 'profile.php'];

if (in_array($_GET['url'], $allowed_urls)) {

header('Location: ' . $_GET['url']);

}

In this example, the redirect is performed only to safe URLs from the list of

allowed ones.

3https://cwe.mitre.org/data/definitions/601.html

63

https://cwe.mitre.org/data/definitions/601.html

TOPIC 10 WEBAPPLICATION SECURITY: COOKIES, SESSIONS, ANDATTACKS

Review Questions

1. What are cookies, and how can they be configured to secure a web application?

2. What security issues arise with the use of sessions?

3. What is a CSRF attack, and how can a web application be protected against

it?

4. What is an XXE attack, and how can it be prevented?

5. How can unsafe redirects be used in phishing attacks?

6. How can session hijacking be prevented?

7. Which cookie attributes can help prevent security-related attacks?

8. What methods can be used to ensure the security of redirects in web applica-

tions?

9. How can CSRF tokens be used correctly in web applications?

10. Which XML libraries can be used to prevent XXE attacks?

64

Topic 11

MOBILEAPPLICATION SECURITY

The objective is to study mobile application threats and protection mechanisms,

and to gain practical skills in analyzing mobile apps based on secure programming

principles.

Tasks for Independent Study

1. Analyze the permissions of an Android application using adb (check what

permissions the app requests and why).

2. Write code to securely store passwords in an iOS application using the Key­

chain.

3. Identify vulnerabilities in a mobile application usingMobSF (Mobile Security

Framework) and provide recommendations for remediation.

4. Implement biometric authentication (Face ID or Touch ID) in a test mobile

application.

5. Compare the security of native apps and Progressive Web Apps (PWA),

focusing on data storage and access to hardware resources.

Brief Theoretical Background

1. Mobile operating system platforms and mobile app architecture.

2. Secure programming for Android OS.

3. Secure programming for iOS.

4. Network operation protectio.

Mobile Operating System Platforms and Mobile Application Architecture

Mobile devices run on various operating systems (Fig. 11.1), the most popular

being Android and iOS. These operating systems have different security mechanisms,

such as permission control, application isolation, and data encryption. A mobile

platform is a general term for technology that enables the creation of applications that

run on mobile devices under Android and iOS.1.

The typical architecture of a mobile application includes several layers:

1One Service (oneservice.in.ua)

65

https://oneservice.in.ua/decision/mobilna-platforma/

TOPIC 11 MOBILEAPPLICATION SECURITY

Figure 11.1 – Mobile OS usage according to StatCounter.

• User Interface (UI) provides a convenient and intuitive interaction with the

application through widgets, animations, and other visual elements.

• Business Logic is responsible for the functionality of the application and man-

ages core processes for solving applied tasks.

• Data Access ensures data storage and retrieval through local databases or

interacts with remote servers using REST, GraphQL APIs, etc.

• Authentication, Security, and Network Services provide secure communication

through SSL/TLS encryption and implement authentication mechanisms such asOAuth

or JWT.

There are at least four typical architectures for mobile applications2, and the

choice of architecture significantly depends on the purpose of the application, devel-

oper experience, chosen technologies, etc.:

• MVC (Model­View­Controller): This is a classic model where Model is re-

sponsible for data, View for the interface, and Controller manages the interaction

logic between them. It is used for clear separation of logic, interface, and data, which

facilitates development and code maintenance.

• MVP (Model­View­Presenter): In this architecture, the Presenter acts as an

intermediary between the Model and View. The View only displays data, while the

Presenter handles all interaction logic. This allows for testing business logic inde-

pendently from the interface.

• MVVM (Model­View­ViewModel): Here, the ViewModel separates business

logic from the interface (View) by interacting with the Model. This architecture is

2IT company WEZOM (wezom.com.ua)

66

https://gs.statcounter.com/os-market-share/mobile-tablet-console/worldwide/#monthly-202408-202409-bar
https://wezom.com.ua/ua/blog/arhitektura-mobilnogo-prilozheniya

MOBILEAPPLICATION SECURITY TOPIC 11

suitable for applications with a lot of data and complex display logic.

• Clean Architecture: Based on the principles of separating business logic,

processes, and technologies. The goal is to create an independent architecture that

does not depend on interfaces, databases, or external services, making it flexible and

easy to test.

Key security issues for mobile applications include controlling access to device

resources, protecting locally stored data, and securely performing network operations.

Secure Programming forAndroid OS

Android is an open-source operating system that uses permission models to pro-

tect access to critical device resources (camera, microphone, contacts, etc.). Android

applications run in isolated environments, preventing unauthorized access to the data

of one application by another.

Android applications are developed in several languages, such as Java, Kotlin,

C, and C++, as well as HTML5 (for mobile web applications). Android apps may use

native code written in C and C++ to implement specific functionalities, such as work-

ing with the Linux kernel. It should be noted that interactions with such applications

via the Java Native Interface (JNI) are potentially susceptible to vulnerabilities, such

as buffer overflow and other issues that may be present in native code implementation

and are common to C and C++.

The SEI Android Secure Coding Standard provides rules for securely coding

applications on the Android platform, aiming to create secure, reliable, and attack-

resistant software systems. The primary focus is on eliminating undefined behaviors

that may lead to software vulnerabilities. Compliance with these rules is necessary

for system security, but not sufficient – secure system design is also crucial. For

critical systems where security is a priority, stricter requirements, such as static

memory allocation, are stipulated. The CERT standard for Android partially integrates

rules from other programming languages, such as C and Java, while considering the

specifics of the Android platform [34].

The standard distinguishes rules and recommendations in four categories:

• Rules specific only to Android.

• Rules and recommendations for C.

• Best practices (recommendations) for secure coding in Java.

• Rules for Java.

Example of SSL/TLS Certificate Verification in Android Applications

Rule 04. Network - SSL/TLS (NET). DRD19. Properly verify server certificate

on SSL/TLS.

67

TOPIC 11 MOBILEAPPLICATION SECURITY

Android applications that use SSL/TLS protocols for secure communication must

properly verify server certificates. Basic verification includes:

• Checking that the subject (CN) of the X.509 certificate matches the URL.

• Verifying that the certificate is signed by a trusted Certification Authority (CA).

• Validating the signature correctness.

• Ensuring the certificate is not expired.

There are also standards for Android developers by the Japan Smartphone Secu-

rity Association (JSSEC) [35; 36].

The Android Application Secure Design/Secure Coding Guidebook, like the SEI

Android Secure Coding Standard mentioned above, contains rules, recommendations,

and best practices for secure design and coding specifically for Android application

developers.

Considering the rapid growth of the smartphone market and the increasing open-

ness of mobile platforms like Android, developers now have access to features that

were previously restricted. However, such openness brings increased responsibility

for developers since improperly designed or coded applications can lead to data leaks

or create security vulnerabilities. Given the open nature of Android, developers need

to be especially vigilant regarding security issues, as there are fewer restrictions on

app releases compared to iOS.

The Android Application Secure Design/Secure Coding Guidebook contains a

significant number of examples for the correct design of Android applications with

detailed examples. All information is divided into four major groups:

• Basic Knowledge of Secure Design and Secure Coding.

• Using Technology in a Safe Way.

• How to Use Security Functions.

• Difficult Problems.

Permission Control in Android

Starting from Android 6.0 (API level 23), users can allow or deny access to

certain application features during its use. This gives users better control over which

data the application can access.

Example of Requesting Camera Permission

if (ContextCompat.checkSelfPermission(this,

Manifest.permission.CAMERA)↪→

!= PackageManager.PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(this,

new String[] { Manifest.permission.CAMERA }, REQUEST_CAMERA);

68

MOBILEAPPLICATION SECURITY TOPIC 11

}

This code checks if the application has permission to access the camera, and if

not, it requests the user’s permission.

Encryption of Local Data in Android

To protect confidential data stored on the device, applications can use the Android

Keystore to securely store encryption keys.

KeyGenerator keyGenerator =

KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,

"AndroidKeyStore");

↪→

↪→

keyGenerator.init(new KeyGenParameterSpec.Builder("myKeyAlias",

KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)

.setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)

.build());

SecretKey key = keyGenerator.generateKey();

This example shows how to create a key in the Keystore for encrypting and

decrypting data.

Example of Using HTTPS in Android with HttpURLConnection

URL url = new URL("https://example.com/api");

HttpsURLConnection connection = (HttpsURLConnection)

url.openConnection();↪→

connection.setRequestMethod("GET");

InputStream inputStream = connection.getInputStream();

// Process the response

Secure Programming for iOS

iOS is a closed-type operating system with a high level of access control to

system resources. Apple provides developers with strict guidelines for protecting user

data and uses application isolation models to ensure security.

69

TOPIC 11 MOBILEAPPLICATION SECURITY

Permission Control in iOS. Like Android, iOS requires applications to request

permissions to access sensitive resources, such as the camera or location. Permission

requests are made through the Info.plist configuration file, where an explanation is

provided for the user as to why the application needs access.

Example of Configuring Location Access Permission

<key>NSLocationWhenInUseUsageDescription</key>

<string>We need access to your location for navigation

purposes.</string>↪→

Data Encryption in iOS

Apple provides data encryption for data stored in applications through the Data

Protection mechanism. Additionally, developers can use Keychain to store sensitive

information such as passwords.

Example of Storing Data in Keychain

let keychain = Keychain(service: "com.example.myapp")

keychain["password"] = "supersecretpassword"

This code saves a password in the Keychain, which uses encryption to protect

sensitive information.

Protecting Network Operations

Both platforms, Android and iOS, support the use ofHTTPS to ensure secure data

transmission over the network. Using HTTPS prevents data interception by attackers

during transmission between the application and the server.

Example of Using HTTPS in iOS with URLSession

let url = URL(string: "https://example.com/api")!

let task = URLSession.shared.dataTask(with: url) { data, response,

error in↪→

// Process the response

}

70

MOBILEAPPLICATION SECURITY TOPIC 11

task.resume()

Review Questions

1. What is the main architecture of a mobile application, and what are its main

levels?

2. What permission control methods are used in Android and iOS?

3. How can you ensure the protection of data stored locally on an Android

device?

4. What is the Android Keystore, and how does it help ensure security?

5. How can the Keychain be used in iOS to securely store sensitive information?

6. How can you ensure the security of network operations in mobile applications?

7. What are the advantages and disadvantages of application isolation in Android

and iOS?

8. How can you protect data during transmission between a mobile application

and the server?

9. How does the permission system work in Android 6.0 and above?

10. What are the main security mechanisms of mobile platforms Android and

iOS to prevent unauthorized access?

71

Topic 12

SECURE SOFTWARE DEVELOPMENT LIFECYCLE (SSDLC)

The objective is to study the concept of the Secure Software Development Life­

cycle (SSDLC) and its phases, and to gain practical skills in applying the SSDLC

methodology.

Tasks for Independent Study

1. Create an SSDLC implementation plan for a fictional company (define the

phases, responsible parties, and security testing tools).

2. Conduct Threat Modeling for a new application feature (use approaches such

as STRIDE or DREAD).

3. Write a secure code review policy for the development team (who performs

reviews, what is reviewed, which tools are used).

4. Analyze the SSDLC phases in the context of the Agile methodology, consid-

ering how frequently security checks should be performed.

5. Develop a security testing plan for each SSDLC phase (planning, design,

development, testing, release).

Brief Theoretical Background

1. Overview of SSDLC structure and components.

Overview of SSDLC

The Secure Software Development Life Cycle (SSDLC) integrates security prac-

tices at each stage of software development. SSDLC helps identify, avoid, and fix vul-

nerabilities early in the development process, reducing the security risks (Fig. 12.11).

The main stages of SSDLC are:

• Requirements Definition.

• Design.

• Development.

• Testing.

• Deployment.

• Maintenance and Monitoring.

1Checkmarx: Secure SDLC

72

https://checkmarx.com/glossary/a-secure-sdlc-with-static-source-code-analysis-tools/

SSDLC TOPIC 12

Figure 12.1 – SSDLC process stages

Requirements Definition

In this initial stage, software requirements are defined, including security re-

quirements. It is important to identify potential threats and risks, and security experts

should participate in the requirements definition process. Key actions include:

• Identifying threats and vulnerabilities.

• Defining security requirements for functionality and data.

Design

This stage involves designing the software architecture with security requirements

in mind. Threat analysis is conducted, and protective mechanisms are defined:

• Conducting Threat Modeling.

• Designing security measures: encryption, authentication, access control.

Development

During development, secure coding practices are applied, such as input validation,

permissions management, and using trusted libraries:

• Using secure coding patterns to prevent injections.

• Performing static code analysis to identify vulnerabilities.

73

TOPIC 12 SSDLC

Testing

Various types of testing are conducted at this stage to detect vulnerabilities,

including penetration testing and automated analysis:

• Penetration Testing to simulate real-world attacks.

• Using dynamic analysis tools to identify vulnerabilities during execution.

Deployment

Deploying the software should include securing the runtime environment, con-

figuring encryption, and access control:

• Using DevSecOps to automate secure deployment.

• Configuring firewalls, VPNs, and other network security tools.

Maintenance and Monitoring

After deployment, continuous monitoring for new vulnerabilities is essential.

Updates and patches are applied to maintain security:

• Regular updates and patching of software.

• Using threat monitoring tools (IDS/IPS).

SSDLC Tools and Methods

• Code Review – manual inspection of the code for potential vulnerabilities.

• Dynamic Analysis – testing the application during runtime to identify vulnera-

bilities.

• Penetration Testing – simulating attacks on the application to find weaknesses.

• Patching and Updates – regular updates to close vulnerabilities.

CVE and CWE in the Context of SSDLC

CVE (Common Vulnerabilities and Exposures) is a system of unique identifiers

for known vulnerabilities, helping to identify and fix software vulnerabilities.

CWE (Common Weakness Enumeration) is a classification of types of vulnerabil-

ities, aiding developers in avoiding common mistakes during software development.

Principles of SSDLC

• Security by Default – software should be secure without additional configura-

tion

• Least Privilege Principle – each user or process should have the minimum

necessary privileges

74

SSDLC TOPIC 12

• Incident Response – the need to have a response plan in place if a threat is

detected

• Continuous Improvement – security threats constantly evolve, so SSDLC

processes must continuously improve

Review Questions

1. What are the stages of SSDLC, and why are they important?

2. What is the role of static code analysis in the SSDLC process?

3. What is CVE, and how does it affect software security maintenance?

4. How can security be integrated at the software deployment stage?

5. What is Penetration Testing, and how do its results help improve security?

6. What are the main security principles in the context of SSDLC?

7. How does Threat Modeling assist in designing secure software?

8. What monitoring methods can be applied during the system maintenance

stage?

9. What is the difference between CVE and CWE, and how are they applied in

SSDLC?

10. How can automated DevSecOps tools enhance security during the develop-

ment process?

75

Topic 13

HIGH-LEVEL SECURITY PROGRAMMING

The objective is to study methods of integrating security at the software architec-

ture level and gain skills in working with encryption protocols.

Tasks for Independent Study

1. Write a data encryption module using AES­256 (e.g., in Python with the

PyCryptodome library).

2. Explore the implementation of the OAuth 2.0 protocol in a web application

(understand the authorization flow and token issuance).

3. Implement a Role­Based Access Control (RBAC) system in an application

(define roles, permissions, and validation mechanisms).

4. Compare password hashing algorithms: bcrypt, scrypt, and Argon2 (perfor-

mance, security, configuration).

5. Create a multi­factor authentication scheme for an API (e.g., passwords +

OTP or hardware security keys).

Brief Theoretical Background

1. High-level security assurance methods.

2. Hashing and cryptography using cryptographic libraries.

3. Authentication via GSSAPI.

4. Use of digital signatures.

High-Level Security Methods

High-level security in corporate systems involves using advanced protective

measures to ensure the integrity, confidentiality, and authenticity of data. This includes

hashing, encryption, digital signatures, and authentication and authorization protocols.

Key security methods include:

• Hashing – a one-way process that transforms data into a fixed-length value,

used to verify data integrity.

• Encryption – the process of converting data into an encrypted form to ensure

confidentiality.

• Digital Signatures – using cryptographic algorithms to ensure the authenticity

and integrity of data.

76

HIGH-LEVEL SECURITY PROGRAMMING TOPIC 13

• Authentication – verifying the authenticity of a user or service, including

protocols such as GSSAPI.

Hashing and Cryptography Using Cryptographic Libraries

Hashing is essential for ensuring data integrity. One of the most commonly used

hashing algorithms is SHA­256, which provides a high level of security. Cryptographic

libraries like OpenSSL offer tools to use various hashing and encryption algorithms.

Example of Hashing Using OpenSSL (SHA-256).

#include <openssl/evp.h>

#include <string.h>

unsigned char hash[EVP_MAX_MD_SIZE];

unsigned int hash_len;

EVP_MD_CTX *mdctx = EVP_MD_CTX_new();

EVP_DigestInit_ex(mdctx, EVP_sha256(), NULL);

EVP_DigestUpdate(mdctx, data, strlen(data));

EVP_DigestFinal_ex(mdctx, hash, &hash_len);

EVP_MD_CTX_free(mdctx);

This code demonstrates how to create a hash for a data array using SHA­256 with

OpenSSL.

Encryption is another crucial tool for ensuring data confidentiality. Cryptographic

algorithms like AES (Advanced Encryption Standard) are widely used to protect data

in corporate systems.

Example of Encryption Using AES.

EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();

EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv);

EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len);

EVP_EncryptFinal_ex(ctx, ciphertext + len, &len);

EVP_CIPHER_CTX_free(ctx);

This example uses AES­256 to encrypt data in CBC mode, providing a high level

of protection.

77

TOPIC 13 HIGH-LEVEL SECURITY PROGRAMMING

Authentication via GSSAPI

GSSAPI (Generic Security Services Application Programming Interface) is a

standard for authentication and establishing secure sessions between users and ser-

vices. This API is widely used in corporate networks to support secure authentication

using protocols such as Kerberos.

GSSAPI allows applications to use various security mechanisms for authentica-

tion without the need to configure cryptographic parameters in detail. For example,

GSSAPI can be used to implement user authentication via Kerberos, enabling reliable

identification of users in corporate networks.

Example of Authentication via GSSAPI (Kerberos).

OM_uint32 major_status, minor_status;

gss_name_t server_name;

gss_buffer_desc name_buf;

gss_ctx_id_t context = GSS_C_NO_CONTEXT;

name_buf.value = "service@hostname";

name_buf.length = strlen((char *)name_buf.value);

major_status = gss_import_name(&minor_status, &name_buf,

GSS_C_NT_HOSTBASED_SERVICE, &server_name);

major_status = gss_init_sec_context(&minor_status,

GSS_C_NO_CREDENTIAL,↪→

&context, server_name, GSS_C_NO_OID,

GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG,

0, NULL, GSS_C_NO_BUFFER, NULL, NULL, NULL);

This example demonstrates the process of initializing an authentication context

using GSSAPI to establish a secure session.

Using Digital Signatures

Digital signatures provide authenticity and integrity of data. They use asymmetric

encryption to verify the data source and ensure that the data has not been altered during

transmission. In corporate systems, digital signatures are widely used for signing

electronic documents or protecting software.

78

HIGH-LEVEL SECURITY PROGRAMMING TOPIC 13

Example of Creating a Digital Signature Using OpenSSL.

EVP_PKEY *private_key = load_private_key();

EVP_MD_CTX *mdctx = EVP_MD_CTX_new();

EVP_SignInit(mdctx, EVP_sha256());

EVP_SignUpdate(mdctx, message, message_len);

EVP_SignFinal(mdctx, signature, &sig_len, private_key);

EVP_MD_CTX_free(mdctx);

This code shows how to create a digital signature for a message using the SHA­256

algorithm and a private key.

Review Questions

1. What is hashing, and what is its primary purpose in security systems?

2. Which cryptographic algorithms are used for data encryption in corporate

systems?

3. How does GSSAPI work, and what is its significance in the authentication

process?

4. What role do digital signatures play in ensuring data security?

5. How can cryptographic libraries be used to implement encryption and hash­

ing?

6. What risks may arise from improper use of encryption?

7. What is AES, and why is this algorithm widely used for data protection?

8. How can GSSAPI be used to secure corporate networks?

9. What types of digital signatures are used in corporate systems, and how do

they help ensure data integrity?

10. How does OpenSSL help implement cryptographic solutions in software?

79

Topic 14

ANALYZING SOFTWAREWITHOUTACCESS TO SOURCE CODE

The objective is to understand the principles of reverse engineering and its

application in security, and to gain practical skills in using reverse engineering tools.

Tasks for Independent Study

1. Analyze a binary file using IDA Pro or Ghidra (identify entry points and main

functions).

2. Locate encryption functions in the reverse-engineered code and try to under-

stand the algorithm being used.

3. Write a patch to modify the program’s behavior (e.g., bypassing license key

verification).

4. Explore code obfuscation techniques such as packers, string encryption, or

code virtualization used to prevent reverse engineering.

5. Perform malware analysis using a debugger such as OllyDbg or x64dbg,

focusing on key execution points.

Brief Theoretical Background

1. Definition and significance of reverse engineering.

2. Core methods of software analysis without source code.

3. Tools used for reverse engineering.

4. Ethical and legal aspects of reverse engineering.

Reverse Engineering Methods

Reverse engineering is the process of analyzing software to discover its structure

and functionality without access to the source code. This method is used for analyzing

suspicious software, finding vulnerabilities, and fixing bugs in compiled programs.

The main reverse engineering methods include:

• Decompilation – converting executable code back into high-level code, allow-

ing researchers to understand the program’s logic.

• Disassembly – converting executable code into low-level assembly code, which

enables analyzing the program’s operation at the machine level.

• Binary File Analysis – examining compiled binary files to detect hidden func-

tions or vulnerabilities.

80

REVERSE ENGINEERING TOPIC 14

Example of Using a Java Decompiler.

javap -c MyClass.class

This example demonstrates the use of the javap tool for decompiling Java byte-

code, allowing the inspection of class methods.

Packing and Its Analysis

Packing is a process used to compress or encrypt executable files to hide their

original code. Packed programs are often used to conceal malware or protect code from

reverse engineering. Unpacking such files is a crucial step for conducting analysis.

Example of a Tool for Analyzing Packed Files (UPX).

upx -d packed_binary

This example shows the use of UPX to unpack an executable file, allowing the

analysis of its original code.

Decompilation

Decompilation is the process of converting executable code into high-level code.

This method helps recover the program’s logic and study its behavior. There are

decompilers for various programming languages that allow the analysis of programs

without access to the source code.

Example of Using a Decompiler for .NET.

ildasm MyProgram.exe

This example demonstrates the use of the ildasm tool for decompiling .NET

applications, enabling the inspection of the program’s code structure and methods.

Network Traffic Analysis

Network traffic analysis allows studying how a program interacts with the net-

work and identifying possible vulnerabilities or malicious actions. For example, it

81

TOPIC 14 REVERSE ENGINEERING

can detect whether confidential data is transmitted over unsecured connections or if

the program communicates with suspicious servers. One of the most common utilities

for this is Wireshark (Fig. 14.1).

Figure 14.1 – Wireshark

Example of Analyzing Traffic Using Wireshark.

wireshark -i eth0 -k

This example demonstrates howWireshark can be used to monitor network traffic

on a network interface, allowing the inspection of packets transmitted or received by

the program.

Attempts to Impersonate a Web Server and Detection Methods

Attackers may attempt to impersonate a web server to steal user data or inject

malicious code. These attacks can be carried out using DNS spoofing or Man­in­

the­Middle (MitM) attacks. Detecting attempts to impersonate a web server involves

analyzing SSL/TLS certificates and verifying that the IP addresses correspond to the

original server.

82

REVERSE ENGINEERING TOPIC 14

Example of Checking an SSLCertificate Using openssl.

openssl s_client -connect example.com:443

This command opens an SSL connection to theweb server and outputs information

about its certificate, allowing verification that the certificate matches the expected

one.

Methods for Detecting Web Server Impersonation.

• Checking SSL/TLS certificates.

• Using network monitoring tools to detect changes in DNS records.

• Analyzing IP addresses and routes to detect deviations from normal network

parameters.

Review Questions

1. What is reverse engineering, and what are its main methods?

2. How does decompilation work, and what tools are used for this process?

3. What is software packing, and how can packed files be analyzed?

4. How can Wireshark be used for network traffic analysis and threat detection?

5. What is DNS spoofing, and how is it used to impersonate a web server?

6. How does SSL certificate checking help detect web server impersonation?

7. What detection methods can be used to protect against web server imperson­

ation?

8. What is disassembly, and how does it aid in reverse engineering?

9. What are the main signs that indicate a possible web server impersonation?

10. How can binary file analysis help identify malware?

83

Topic 15

SOFTWAREAND VIDEO GAME PROTECTION METHODS

The objective is to study methods of protecting software and video games from

unauthorized access and modification, and to gain skills in analyzing common security

threats in gaming software.

Tasks for Independent Study

1. Implement anti­cheat protection in an online game (e.g., client integrity checks

or detection of known cheat tools).

2. Ensure data integrity between the client and server using encryption mecha-

nisms or digital signatures.

3. Set up a system for detecting modified game files that alerts when resources

or executable files are changed.

4. Create a licensing mechanism for desktop software (e.g., key generation and

signature validation).

5. Perform a game stress test for DDoS resistance by simulating high-load

scenarios.

Brief Theoretical Background

1. The importance of software protection.

2. Core methods of software protection.

3. Game protection against piracy and cracking.

4. Legal aspects of software protection.

Methods of Software Protection

Software protection is a set of methods and technologies used to prevent unau-

thorized use, modification, and reverse engineering of software. These include code

signing, obfuscation, watermarking, and anti-tampering mechanisms.

Main protection methods:

• Code signing (Digital Signing) – the use of digital signatures to confirm the

integrity and authenticity of the software.

• Code obfuscation (Software Obfuscation) – a technique that makes the source

code difficult to read to complicate reverse engineering.

84

SOFTWAREAND GAME PROTECTION TOPIC 15

• Anti­tampering and Binary Integrity Checking – technologies that detect

changes in the software and can trigger mechanisms to terminate the program.

• Software protection dongles – special hardware devices that provide access

to the software only when connected to a computer, thus preventing unauthorized

copying or use.

• Cloud licensing servers (Cloud Licensing Location) – remote servers that

manage software licenses and verify their validity during software launch or use.

• White­box cryptography – a method of protecting cryptographic algorithms

where keys remain secure even when the code and data are accessible, ensuring safe

cryptographic operations in potentially malicious environments.

Code Signing

Cryptographic methods play a key role in software protection by providing

guarantees of integrity and origin. The use of hashing and digital signatures allows

verifying that the software has not been modified and that its origin is authentic.

Key Protection Mechanisms

• Hashing uses algorithms such as SHA­256 to generate a unique hash, allowing

verification of a file’s integrity.

• Digital signatures enable the verification of the authenticity of the software’s

source.

Code signing is the process of digitally signing executable files and scripts to

confirm their authenticity to the operating system and user. This method uses a

cryptographic signature and certificate to verify the authenticity of the software but

does not guarantee protection against modifications in the field.

Code signing usually involves a digital signature to confirm the author or build

system and a checksum to detect modifications.

The signature is always verified by the operating system at startup, while plugins

and add-ons are checked by the host application during loading. Code signing is

mandatory in many ecosystems, as it ensures that the software comes from a trusted

source. However, it should not be the sole protection measure, as it can be bypassed

if the system is compromised.

Example of Code Signing with OpenSSL

openssl dgst -sha256 -sign private.pem -out signature.bin program.exe

openssl dgst -sha256 -verify public.pem -signature signature.bin

program.exe↪→

85

TOPIC 15 SOFTWAREAND GAME PROTECTION

This code demonstrates the use of OpenSSL for signing and verifying an exe-

cutable file, ensuring its integrity and authenticity. The first line signs the program.exe

file using the private key private.pem, creating a signature file signature.bin. The

second line verifies the signature using the corresponding public key public.pem.

Protection Against Reverse Engineering

Software protection includes methods that make reverse engineering econom-

ically infeasible or difficult. Code obfuscation, encryption algorithms, or special

instructions can significantly complicate reverse engineering. This also includes

methods to protect against dynamic analysis.

Code Obfuscation

Code obfuscation is a protection technique that changes the structure and appear-

ance of the source code, maintaining its functionality but making it hard to analyze

and reverse engineer (Fig. 15.11). It is a popular way to protect commercial software

from unauthorized access and hacking.

Figure 15.1 – Code Obfuscation

Main Obfuscation Techniques:

• Symbol renaming: names of classes, methods, and variables are changed to

random or short values (e.g., Class123, MethodXYZ, or varA1), making them incompre-

hensible to humans. For example, the variable customerBalance may be renamed to

a1, complicating the understanding of its function.

• Metadata removal: the obfuscator can remove metadata, reducing the amount

of context available for source code analysis.

1JSObfusDetector

86

DOI:10.1109/AISP.2015.7123508

SOFTWAREAND GAME PROTECTION TOPIC 15

• Structural obfuscation: the logic of the code is changed to a more complex

form. For example, conditional expressions may be transformed into more intricate

but equivalent versions.

• Inlining and abstraction removal: abstractions such as functions or classes can

be “inlined” or merged, making analysis and reverse engineering more difficult.

• Polymorphism and dynamic control flow: the logical structure becomes dy-

namic, making it harder to predict and understand.

• String encryption: static strings with important information, such as URLs or

messages, may be encrypted and decrypted only during execution.

Popular Obfuscation Tools:

• ProGuard – a tool for obfuscating Java and Android applications.

• Dotfuscator – a tool for obfuscating .NET applications.

• JavaScript Obfuscator – a tool for obfuscating JavaScript code.

• Stunnix C and C++ Obfuscator – a tool for obfuscating C and C++ code.

International Obfuscated C Code Contest

The International Obfuscated C Code Contest (IOCCC) is an interesting resource

for exploring code obfuscation techniques. The results of the winners demonstrate an

endless number of creative ideas and unconventional approaches to programming in

C, providing insights into how code can be intentionally altered to be unrecognizable

and challenging to read and understand.

By analyzing the winners’ submissions, researchers, developers, and program-

ming enthusiasts can gain a deeper understanding of obfuscation methods, including

complex control flow, unconventional syntax, and non-obvious use of language fea-

tures.

It is worth noting that such obfuscation techniques are made possible by the

unique capabilities and flexibility of the C programming language.

Below is a program that ”solves the classic problem of placing n queens on a

chessboard of up to 99x99, keeping the program as short as possible and using only

for loops”2:

v,i,j,k,l,s,a[99];

main()

{

2https://www.ioccc.org/1990/baruch.c

87

https://www.ioccc.org/1990/baruch.c

TOPIC 15 SOFTWAREAND GAME PROTECTION

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,j+=(v=j<s&&(!k&&!!pr c

intf(2+"\n\n%c"-(!l<<!j),"

#Q"[l^v?(l^j)&1:2])&&++l||a[i]<s&&v&&v-i+j&&v+i-j))&&!(l%=s), c

v||(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[-- i])

↪→

↪→

↪→

;

}

This is an obfuscated C program that performs a form of backtracking algorithm

to generate a numeric arrangement based on input s. It uses minimal syntax, dense

logic expressions, and inline printf to display progress.

#include <stdio.h>

int v, i, j, k, l, s, a[99];

int main() {

scanf("%d", &s);

while (*a - s) {

v = a[j *= v] - a[i];

k = (i < s);

j += (

v = (j < s) &&

(

!k &&

!!printf(2 + "\n\n%c" - (!l << !j), " #Q"[(l ^ v) ?

((l ^ j) & 1) : 2]) &&↪→

++l || (a[i] < s && v && v - i + j && v + i - j)

)

) && !(l %= s);

if (!v) {

if (i == j)

a[i += k] = 0;

else if (++a[i] >= s * k)

++a[-- i];

}

}

return 0;

}

Another interesting example of obfuscated code from one of the winners of the

88

SOFTWAREAND GAME PROTECTION TOPIC 15

IOCCC 2020 contest3:

Limitations of Obfuscation

Obfuscation significantly complicates reverse engineering, but experienced de-

velopers, including attackers, can use automated tools for decompiling and step-by-

step code execution. Nevertheless, it creates additional barriers that enhance software

protection against hacking.

#define/**/Q(x,y)char*/* */q=y#x","#y")",*p,s[x;}

/*IOCCC'20*/#include/* */<stdio.h>/*-Qlock-*/

int(y),x,i,k,r;Q(9/* 12 */<<9];float(o)[03];

void(P)(){*o=r<0/* 11 1 */?r:-r;o[1]=39.5;

o[2]=22.5;for(k/* 10 2 */=0;++k<39;*o*=i

/6875.5/(k%2?k/* */:-k))y=o[1+k%2

]+=*o;k=o[2];/* 9 o-----> 3 */p=s+y+k/2*80;

}int(main)()/* / */{for(p=s;+i<

1839;*q>32?k/* 8 L 4 */=i++/80-11,y

=(750>r*r+k/* 7 5 */*k*4)*4+y/2

,*p++=r<41?/* 6 */y?"0X+0X+!"

[y-1]-1:+*q/* */++:10:*q++)

r=i%80-38;;/* */;for(x=13,r

=20;i=3600*/* \ / -----+ */--x,i;*p+ +=

"OISEA2dC8e"/* \ / ---- | */[x%10],*p+ =x

/10*41)P();r/* \ / ---- | */=10;;sscanf(

__TIME__,"%d"/* \ / ---- | */":%d:%d",&k,&

x,&i);for(i+=(/* X ---- | */k*60+x)*60;18+

r;*p=k%2?*p%2?+/* __/ __ | | */59:44:*p>39?59:

39,i=!r--?i%3600/* / \ / \ | | */*12:i)P();puts(s

),"#define/**/Q(x"/* __/ __/ +--+ */",y)char*q=y#x\","

"\"#y\")\",*p,s[x;}"/* */"/*IOCCC'20*/#inclu"

"de<stdio.h>/*-Qlock-"/* */"*/int(y),x,i,k,r;Q(")

Methods for Detecting Modifications and Halting Execution

Another task is to protect against unauthorized access and modifications to binary

code, aiming to safeguard software from being altered and used in ways not intended

by the developers. Anti­tampering protection is designed to cause a smooth failure

during program execution without providing clues about why the modified code is not

working. Although it does not prevent other developers from studying the executable

code, this method provides effective protection and significantly complicates dynamic

analysis of the software.

Technologies for detecting code modifications allow identification of software

changes. Programs can periodically check the integrity of their files or use hashing

3https://www.ioccc.org/2020/endoh3/index.html

89

https://www.ioccc.org/2020/endoh3/index.html

TOPIC 15 SOFTWAREAND GAME PROTECTION

mechanisms to verify critical components. If changes are detected, such systems can

terminate the program or block access to certain functions.

Protection against unauthorized access can be implemented both inside and

outside the protected application.

Software for protecting against unauthorized access is used in many fields:

embedded systems, financial applications, mobile device software, network device

systems, fraud prevention in games, and more.

It should be noted that the samemethods are often used by developers ofmalicious

software for the same purpose — to complicate the dynamic analysis of viruses,

rootkits, worms, etc.

Example of Detecting Changes in a File

String originalHash = "abcd1234...";

String currentHash = calculateHash("program.exe");

if (!originalHash.equals(currentHash)) {

System.exit(1); // Terminate the program

}

Software Protection Dongles

Hardware security dongles, such as flash drives, are dual-interface security tokens

used in systems to protect software from unauthorized use. Without these keys, the

software may operate in a limited mode or not work at all.

Modern typical dongles contain non-volatile memory, which allows storing and

executing certain parts of the software on the dongle. They also feature built-in

robust encryption and use manufacturing technologies that make reverse engineering

impossible.

Theoretically, such dongles can be cloned using hardware cloning methods. To

prevent this, special smart cards can be used.

Cloud Licensing Location

Considering the shortcomings of traditional protection methods, the transition

to cloud technologies in the field of licensing provides a higher level of security

than systems with hardware dongles. Cloud licensing eliminates the risk of losing or

damaging keys or local licensing servers and significantly complicates unauthorized

use. However, despite all the advantages, cloud licensing can be compromised on

client computers, so client software also requires protection against reverse engineering

and modification.

90

SOFTWAREAND GAME PROTECTION TOPIC 15

White-box Cryptography

The main idea of white-box cryptography methods is to combine the key and

cryptographic algorithm code into a new, transformed code. The key is effectively

hidden in the code and cannot be easily extracted. These methods focus on protecting

cryptographic algorithms and keys in environments where the executable code is

accessible. Their goal is to complicate the analysis of cryptographic operations to

preserve the confidentiality of keys and protect algorithms, even if an attacker has

access to the code.

Currently, commercial implementations of white-box cryptography methods are

available for major symmetric block ciphers (AES and DES). Additionally, they may

include implementations of hashing, RSA, and elliptic curve cryptography methods.

These methods can be considered advanced techniques of code obfuscation.

Protecting Computer Game Software

There are two main issues when it comes to protecting computer games – the

protection of intellectual property rights (legal matters) and the protection of the game

ecosystem (technical and organizational matters).

The protection of intellectual property covers such components of games as:

• the multimedia subsystem of the game – audiovisual effects, musical accom-

paniment, video sequences, audio sequences, animation, graphical elements (logos,

settings, characters, objects, interfaces, fonts, etc.);

• the storyline;

• characters;

• databases, including their structures;

• user manuals;

• …and many other components.

To protect the game ecosystem, the above methods are used, but today, with

the rise of online games and mobile game applications, there are additional specific

challenges related to the gameplay.

Historically, complex hardware protectionmethods were used to protect computer

games, which limited the cloning of game media by manipulating the medium, as

well as hardware protection keys that prevented unauthorized game launches.

Network games are vulnerable to network attacks, so it is important to apply

secure programming principles:

• Encryption of network traffic – using encryption protocols such as TLS or

DTLS to protect game transactions from interception or modification;

• Player authentication – verifying the authenticity of each player to prevent

unauthorized access to game servers and the use of fake accounts;

91

TOPIC 15 SOFTWAREAND GAME PROTECTION

• Protection of personal data – ensuring compliance with local laws, such as

GDPR, to maintain the confidentiality and security of players’ personal information;

• Detection of anomalous activity – using logs, monitoring systems, and behavior

analysis tools to detect suspicious activities, such as fraud or DDoS attacks.

Legal Aspects of Software Protection

• Copyright protects software as a work, granting exclusive rights to reproduce,

distribute, and modify it.

• Software patents allow protecting new and useful technical solutions if they

meet patent law requirements.

• License agreements (EULA and SLA) regulate the use of software, establishing

the rights and responsibilities of the parties.

• Data protection laws require ensuring the confidentiality of user data in accor-

dance with local regulations (e.g., GDPR).

• Trade secret protection involves keeping unique algorithms or technologies

confidential as commercial information.

• Anti­piracy laws and measures provide for penalties for illegal copying and

distribution of software. In many countries, there is liability for using torrents as a

tool for piracy.

• Digital Rights Management (DRM) restricts access and controls the use of

software and multimedia.

Review Questions

1. What is code signing, and how does it protect software?

2. How does obfuscation work, and how does it complicate reverse engineering?

3. What are watermarks in software, and how do they help protect programs?

4. What cryptographic guarantees ensure the integrity and origin of the software?

5. What methods of detecting modifications are used to protect software?

6. How can network computer games be protected from network attacks?

7. What methods are used to protect computer games from piracy?

8. What is DRM, and how does it help protect software from unauthorized use?

9. How do anti­cheat systems protect online games from third-party software?

10. What secure programming principles should be applied to multiplayer

games?

92

Topic 16

SOFTWARE PROTECTION BASED ON HMACAND DIGITAL

SIGNATURES

The objective is to become familiar withHMAC and digital signaturemechanisms

for ensuring data integrity and authenticity, and to gain practical skills in working

with digital signatures in programming languages.

Tasks for Independent Study

1. Implement HMAC (Hash­Based Message Authentication Code) in a program-

ming language of your choice (e.g., Python). Explain the principle behind HMAC,

focusing on key usage and the signature generation process.

2. Generate a digital signature for a file using OpenSSL:

• Create a key pair (private and public keys);

• Sign a selected file using the private key;

• Verify the signature using the public key;

• Document all commands and options used.

3. Implement a simple digital signature mechanism in Python (using the

cryptography or PyOpenSSL library). Demonstrate the process of signing and

verifying (e.g., for a text file).

4. Compare digital signature algorithms – RSA, ECDSA, EdDSA – focusing on:

• Performance (signing and verification speed);

• Key and signature sizes;

• Security level (resistance to cryptanalysis).

Summarize the suitability of each algorithm for different scenarios.

5. Explain the difference between HMAC and digital signatures, focusing on:

• Method of signature creation (symmetric vs. asymmetric);

• Security advantages and limitations;

• Common application areas (e.g., securing web requests, document signing).

Provide examples of when to choose HMAC or a digital signature.

Brief Theoretical Background

1. Overview of HMAC (hash code with secret key).

2. Using HMAC to ensure integrity and authenticity.

3. Overview of digital signatures.

93

TOPIC 16 HMACAND DIGITAL SIGNATURES

4. Using digital signatures to protect software.

5. Comparison of HMAC and digital signatures for different application types.

HMAC: Ensuring Data Integrity and Authenticity

HMAC (Hashed Message Authentication Code) is a message authentication

method that uses a hash function along with a secret key to ensure data integrity

and authenticity. HMAC guarantees that the message has not been altered during

transmission and that the sender is authenticated (Fig. 16.11).

Key properties of HMAC:

• Data integrity – HMAC ensures the detection of any changes to the data during

transmission.

• Authenticity – only parties that share the secret key can create or verify the

HMAC.

HMAC works by combining the message with a secret key and applying a hash

function such as SHA­256 orMD5 to generate a unique authentication code for the

message.

HMAC is widely used for securing API requests, message authentication in

protocols (e.g., TLS), and protecting sensitive data from tampering.

Figure 16.1 – HMAC

1Configuring & Understanding OSPF HMACAuthentication (community.cisco.com)

94

https://community.cisco.com/t5/networking-knowledge-base/configuring-amp-understanding-ospf-hmac-authentication/ta-p/4483275

HMACAND DIGITAL SIGNATURES TOPIC 16

Example of HMAC with SHA-256

#include <openssl/hmac.h>

unsigned char *result;

unsigned int len = 32;

result = HMAC(EVP_sha256(), key, strlen(key), data, strlen(data),

NULL, NULL);↪→

This code demonstrates the use ofHMACwith the SHA­256 algorithm to compute

a hash of the message using a secret key.

HMAC is widely used for securing API requests, message authentication in

protocols (e.g., TLS), and protecting sensitive data from tampering.

Digital Signatures: Authenticity and Non-Repudiation of Messages

A Digital Signature is a cryptographic method that ensures the authenticity,

integrity, and non-repudiation of electronic documents or messages (Fig. 16.22). This

method uses a pair of keys: a private key to sign the document and a public key to

verify the signature.

Figure 16.2 – Digital Signature

2Comodo: What is Digital Signature? How does it Work? (comodosslstore.com)

95

https://comodosslstore.com/blog/what-is-digital-signature-how-does-it-work.html

TOPIC 16 HMACAND DIGITAL SIGNATURES

Key properties of Digital Signatures:

• Authenticity – the signature verifies that the document was signed by the owner

of the private key.

• Integrity – the signature also ensures that the document has not been altered

since it was signed.

• Non­repudiation – the sender cannot deny having signed the document, as the

signature is unique and tied to the sender’s private key.

The process of creating a digital signature involves computing a hash of the

message and encrypting this hash with the sender’s private key. The recipient can

verify the signature by decrypting it with the sender’s public key and comparing the

obtained hash with the hash of the message itself.

Example of Creating a Digital Signature with OpenSSL

EVP_MD_CTX *mdctx = EVP_MD_CTX_new();

EVP_PKEY *private_key = load_private_key("private_key.pem");

EVP_SignInit(mdctx, EVP_sha256());

EVP_SignUpdate(mdctx, message, strlen(message));

EVP_SignFinal(mdctx, signature, &sig_len, private_key);

EVP_MD_CTX_free(mdctx);

Digital signatures are widely used in areas such as e­commerce, legal documents,

and software protection to prevent unauthorized modifications. For example, software

can be signed by a developer, and users can verify the signature before installation to

ensure its authenticity and integrity.

This code demonstrates how to create a digital signature for a message using

SHA­256 and a private key.

Digital signatures are widely used in areas such as e-commerce, legal documents,

and software protection to prevent unauthorized modifications. For example, software

can be signed by a developer, and users can verify the signature before installation to

ensure its authenticity and integrity.

The Role of Digital Signatures and HMAC in Security

Both HMAC and digital signatures are tools for ensuring software and data se-

curity. HMAC is effective in scenarios where both parties share a secret key and need

to ensure the authenticity and integrity of messages without requiring asymmetric en­

cryption. On the other hand, digital signatures provide guarantees of non­repudiation

and authenticity through the use of asymmetric keys.

96

HMACAND DIGITAL SIGNATURES TOPIC 16

HMAC and digital signatures are used in different scenarios:

• HMAC – suitable for message authentication in secure communication chan-

nels (e.g., VPN or TLS, see Fig. 16.33).

• Digital Signatures – suitable for document and software authentication and

long­term authenticity assurance.

Figure 16.3 – IPSec

Review Questions

1. What is HMAC, and how does it ensure data integrity and authenticity?

2. How is HMAC used in secure communications such as TLS or VPN?

3. What is a digital signature, and how does it ensure authenticity and non­

repudiation of messages?

4. What is the difference between HMAC and digital signatures?

5. How does asymmetric encryption work in the context of a digital signature?

6. How is the integrity of a signed message or document verified?

7. What hashing algorithms can be used in HMAC and digital signatures?

3An Illustrated Guide to IPsec (www.unixwiz.net)

97

http://www.unixwiz.net/techtips/iguide-ipsec.html

TOPIC 16 HMACAND DIGITAL SIGNATURES

8. In what scenarios is HMAC more appropriate than a digital signature?

9. How does OpenSSL assist in creating HMACs and digital signatures?

10. What are the advantages and disadvantages of using digital signatures com-

pared to other authentication methods?

11. How does key management differ between HMAC and digital signature

systems?

12. What role do certificate authorities (CAs) play in the validation of digital

signatures?

13. What are common vulnerabilities or implementation mistakes with HMAC

or digital signatures?

14. How can timestamps or counters be used to prevent replay attacks with

digital signatures or HMAC?

15. What libraries or APIs are commonly used in programming languages like

Python or Java to implement HMAC and digital signatures?

98

LIST OF REFERENCES

1. Savchenko V. M.,Mnushka O. V.Modern Secure Programming Technologies :

Textbook. – Kharkiv : NTU ”KhPI”, 2024. – 180 p.

2. Savchenko V., Mnushka O.Modern Secure Programming Technologies. Work-

shops : Educational and methodological guide. – Kharkiv : FOP Brovin O. V.,

2024. – 136 p. – ISBN 978-617-8238-76-6. – URL: https:/ /repository.kpi.

kharkov.ua/handle/KhPI-Press/85833 (visited on 11/26/2024).

3. Остапов С., Євсеєв С., Король О. Кібербезпека: сучасні технології захисту :

Навчальний посібник. – Харків : Новий світ, 2020. – 678 с. – URL: http:

//library.kpi.kharkov.ua/en/inftechnologies/кібербезпека-сучасні-технології-

захисту (дата зверн. 26.11.2024).

4. Лісовська Ю. Кібербезпека: ризики та заходи : Навчальний посібник. –

Київ : Видавничий дім «КОНДОР», 2019. – 272 с. – URL: http://library.kpi.

kharkov.ua/files/new_postupleniya/kibrtz.pdf (дата зверн. 26.11.2024).

5. Тарнавський Ю. А. Технології захисту інформації : Підручник. – Київ :

КПІ ім. Ігоря Сікорського, 2018. – 162 с. – URL: https://ela.kpi.ua/handle/

123456789/23896 (дата зверн. 26.11.2024).

6. Helfrich J. N. Security for Software Engineers. – Boca Raton : CRC Press,

Taylor & Francis Group, 2020. – URL: http://repo.darmajaya.ac.id/4635/1/

SecurityforSoftwareEngineers(PDFDrive).pdf (visited on 11/26/2024).

7. Winkler I., Gomes A. T. Advanced Persistent Security. – Amsterdam : Syngress /

Elsevier, 2017. – URL: https://www.sciencedirect.com/book/9780128093160/

advanced-persistent-security.

8. Paulsen C., Byers R. Glossary of Key Information Security Terms. – National

Institute of Standards, Technology, 2019. – URL: https://nvlpubs.nist.gov/

nistpubs/ir/2013/nist.ir.7298r2.pdf (visited on 11/25/2024).

9. Committee on National Security Systems. CNSS Glossary. – 2022. – URL:

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf (visited on

11/25/2024).

10. Federal Bureau of Investigation. Internet Crime Report 2023. – 2023. – URL:

https://www.ic3.gov/Media/PDF/AnnualReport/2023_IC3Report.pdf (visited

on 04/30/2024).

99

https://repository.kpi.kharkov.ua/handle/KhPI-Press/85833
https://repository.kpi.kharkov.ua/handle/KhPI-Press/85833
http://library.kpi.kharkov.ua/en/inftechnologies/%D0%BA%D1%96%D0%B1%D0%B5%D1%80%D0%B1%D0%B5%D0%B7%D0%BF%D0%B5%D0%BA%D0%B0-%D1%81%D1%83%D1%87%D0%B0%D1%81%D0%BD%D1%96-%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-%D0%B7%D0%B0%D1%85%D0%B8%D1%81%D1%82%D1%83
http://library.kpi.kharkov.ua/en/inftechnologies/%D0%BA%D1%96%D0%B1%D0%B5%D1%80%D0%B1%D0%B5%D0%B7%D0%BF%D0%B5%D0%BA%D0%B0-%D1%81%D1%83%D1%87%D0%B0%D1%81%D0%BD%D1%96-%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-%D0%B7%D0%B0%D1%85%D0%B8%D1%81%D1%82%D1%83
http://library.kpi.kharkov.ua/en/inftechnologies/%D0%BA%D1%96%D0%B1%D0%B5%D1%80%D0%B1%D0%B5%D0%B7%D0%BF%D0%B5%D0%BA%D0%B0-%D1%81%D1%83%D1%87%D0%B0%D1%81%D0%BD%D1%96-%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-%D0%B7%D0%B0%D1%85%D0%B8%D1%81%D1%82%D1%83
http://library.kpi.kharkov.ua/files/new_postupleniya/kibrtz.pdf
http://library.kpi.kharkov.ua/files/new_postupleniya/kibrtz.pdf
https://ela.kpi.ua/handle/123456789/23896
https://ela.kpi.ua/handle/123456789/23896
http://repo.darmajaya.ac.id/4635/1/Security%20for%20Software%20Engineers%20(%20PDFDrive%20).pdf
http://repo.darmajaya.ac.id/4635/1/Security%20for%20Software%20Engineers%20(%20PDFDrive%20).pdf
https://www.sciencedirect.com/book/9780128093160/advanced-persistent-security
https://www.sciencedirect.com/book/9780128093160/advanced-persistent-security
https://nvlpubs.nist.gov/nistpubs/ir/2013/nist.ir.7298r2.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2013/nist.ir.7298r2.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2023_IC3Report.pdf

BIBLIOGRAPHY

11. Samani R.AnAnalysis of theWannaCry Ransomware Outbreak. – 2017. – URL:

https://www.mcafee.com/blogs/other-blogs/executive-perspectives/analysis-

wannacry-ransomware-outbreak/ (visited on 04/30/2024).

12. Microsoft Security Response Center. Analyzing Solorigate, the compromised

DLL used in the SolarWinds attack. – 2020. – URL: https://www.microsoft.

com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-

dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-

helps-protect/ (visited on 04/30/2024).

13. Microsoft Security. Guidance for responders: Investigating and remediating

on-premises Exchange Server vulnerabilities. – 2021. – URL: https://msrc.

microsoft . com / blog / 2021 / 03 / guidance - for - responders - investigating -

and-remediating-on-premises-exchange-server-vulnerabilities/ (visited on

04/30/2024).

14. Miller M. Deepfakes: A Real Threat to Cybersecurity. – 2023. – URL: https:

//kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf

(visited on 04/30/2024).

15. European Union Agency for Law Enforcement Cooperation. Facing reality?:

law enforcement and the challenge of deepfakes : an observatory report from the

Europol innovation lab. – Publications Office, 2024. – DOI: 10.2813/158794.

16. Proceedings of the 32nd USENIX Security Symposium : USENIX Security

Symposium. – [Berkeley, CA] : USENIXAssociation, 2023. – 490 p. – ISBN

978-1-939133-37-3.

17. Language Models are Few-Shot Learners / T. B. Brown [et al.]. – 2020. – DOI:

10.48550/ARXIV.2005.14165.

18. OWASP Foundation. OWASP Top 10 - 2021. – 2021. – URL: https://owasp.org/

www-project-top-ten/ (visited on 10/30/2024).

19. Software Engineering Institute. SEI CERT C Coding Standard. – Version 01. –

Carnegie Mellon University, 2016. – URL: https: / /resources.sei .cmu.edu/

downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf

(visited on 05/15/2024).

20. Ballman A. SEI CERT C++ Coding Standard. – Version 01. – Carnegie Mellon

University, 2016. – URL: https://resources.sei.cmu.edu/downloads/secure-

coding / assets / sei - cert - cpp - coding - standard - 2016 - v01 . pdf (visited on

05/15/2024).

21. The CERT Oracle Secure Coding Standard for Java / ed. by F. W. Long. – Upper

Saddle River, NJ : Addison-Wesley, 2012. – 699 p. – (The SEI series in software

engineering). – ISBN 0-13-288284-1.

100

https://www.mcafee.com/blogs/other-blogs/executive-perspectives/analysis-wannacry-ransomware-outbreak/
https://www.mcafee.com/blogs/other-blogs/executive-perspectives/analysis-wannacry-ransomware-outbreak/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://msrc.microsoft.com/blog/2021/03/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/
https://msrc.microsoft.com/blog/2021/03/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/
https://msrc.microsoft.com/blog/2021/03/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf
https://doi.org/10.2813/158794
https://doi.org/10.48550/ARXIV.2005.14165
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf

BIBLIOGRAPHY

22. Software Engineering Institute. CERT Secure Coding Standards. – 2021. – URL:

https://www.securecoding.cert.org (visited on 04/30/2024).

23. European Union. General Data Protection Regulation (GDPR). – 2016. – URL:

https://gdpr.eu/ (visited on 10/30/2024).

24. PCI Security Standards Council. PCI Security Standards Overview. – 2021. –

URL: https://www.pcisecuritystandards.org/standards/ (visited on 10/30/2024).

25. OpenSSF. Secure Coding Guide for Python. – 2024. – URL: https://github.com/

ossf/wg-best-practices-os-developers/tree/main/docs/Secure-Coding-Guide-for-

Python (visited on 05/12/2024).

26. Checkmarx. JavaScript Secure Coding Practices (JS-SCP). – 2024. – URL:

https://github.com/Checkmarx/JS-SCP (visited on 05/12/2024).

27. Amazon Web Services. What is Virtualization? – 2024. – URL: https://aws.

amazon.com/what-is/virtualization/ (visited on 05/15/2024).

28. NIST cloud computing reference architecture / F. Liu [et al.]. – 2011. – DOI:

10.6028/nist.sp.500-292.

29. The MITRE Corporation. Common Weakness Enumeration (CWE). – 2024. –

URL: https://cwe.mitre.org/index.html (visited on 05/15/2024).

30. The MITRE Corporation. Common Vulnerabilities and Exposures (CVE). –

2024. – URL: https://www.cve.org/ (visited on 05/15/2024).

31. Google. Prepare for the phaseout of third-party cookies. – 2024. – URL: https:

//support.google.com/google-ads/answer/1033961 (visited on 05/15/2024).

32. Wagner K. Google Third Party Cookies Phase Out in 2024: Timeline and Tips. –

03/2024. – URL: https://kattwagner.com/google-third-party-cookies-phase-out-

in-2024 (visited on 05/15/2024).

33. Google. A more private web: Privacy Sandbox. – 2023. – URL: https : / /

privacysandbox.com/ (visited on 05/15/2024).

34. Software Engineering Institute. Android Secure Coding Standard. – 2024. –

URL: https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+

Coding+Standard (visited on 05/25/2024).

35. JSSEC. Android Secure Coding. – 2018. – URL: https://www.jssec.org/dl/

android_securecoding_en.pdf (visited on 05/15/2024).

36. JSSEC. Security Guidelines 2012. – 2012. – URL: https://www.jssec.org/dl/

guidelines2012Enew_v1.0.pdf (visited on 05/15/2024).

101

https://www.securecoding.cert.org
https://gdpr.eu/
https://www.pcisecuritystandards.org/standards/
https://github.com/ossf/wg-best-practices-os-developers/tree/main/docs/Secure-Coding-Guide-for-Python
https://github.com/ossf/wg-best-practices-os-developers/tree/main/docs/Secure-Coding-Guide-for-Python
https://github.com/ossf/wg-best-practices-os-developers/tree/main/docs/Secure-Coding-Guide-for-Python
https://github.com/Checkmarx/JS-SCP
https://aws.amazon.com/what-is/virtualization/
https://aws.amazon.com/what-is/virtualization/
https://doi.org/10.6028/nist.sp.500-292
https://cwe.mitre.org/index.html
https://www.cve.org/
https://support.google.com/google-ads/answer/1033961
https://support.google.com/google-ads/answer/1033961
https://kattwagner.com/google-third-party-cookies-phase-out-in-2024
https://kattwagner.com/google-third-party-cookies-phase-out-in-2024
https://privacysandbox.com/
https://privacysandbox.com/
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://www.jssec.org/dl/android_securecoding_en.pdf
https://www.jssec.org/dl/android_securecoding_en.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf

Навчальне видання

САВЧЕНКО Володимир Миколайович

МНУШКА Оксана Василівна

СУЧАСНІ ТЕХНОЛОГІЇ БЕЗПЕЧНОГО ПРОГРАМУВАННЯ

Навчально-методичний посібник

для самостійної роботи студентів другого (магістерського) рівня

денної, заочної та дуальної форм навчання

за спеціальністю 123 “Комп’ютерна інженерія”

Англійською мовою

Відповідальний за випуск проф. Заковоротний О. Ю.

Роботу до видання рекомендував проф. Заполовський М. Й.

В авторській редакції

План 2025 р., поз. 18

Гарнітура Times New Roman. Ум. друк. арк. 4.64

Видавничий центр НТУ “ХПІ”.

Свідоцтво про державну реєстрацію ДК № 5478 від 21.08.2017 р.

61002, м. Харків, вул. Кирпичова, 2

Електронне видання

Department of
Computer
Engineering and
Programming
NTU «KhPI»

	Preface
	Introduction to the Course
	Overview of Secure Programming Methods
	Memory Corruption and Buffer Overflows
	Code Injections
	Concurrency Issues (Race Conditions)
	Malware and Social Engineering
	Secure Programming Methods in Programming Languages
	Virtualization and Cloud Applications
	General Issues in Web Application Security
	Web Application Security: Cookies, Sessions, and Attacks
	Mobile Application Security
	SSDLC
	High-Level Security Programming
	Reverse Engineering
	Software and Game Protection
	HMAC and Digital Signatures
	List of References

