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Introduction

The current stage of scientific and technological development requires the
improvement of strength calculation methods in order to introduce new
technologies, increase the reliability and durability of machines, as the
competitiveness of engineering products on the world market is impossible without
a sharp improvement in quality machines.

The textbook is one of a series of educational and methodological literature
prepared at the Department of Resistance of Materials of NTU «KhPI» in order to
fill the gap created in recent years in the publication of educational literature, in
particular, the course «Resistance of materials and calculations for strength in
mechanical engineeringy.

The manual covers one of the important sections of the general course of
resistance of materials, namely, calculations of bending, and is intended for
students to master the general provisions of the theory of flat direct bending of
beams, acquaintance with the examples.

The first section of the manual considers the bending of rectilinear rods, the
definition of internal force factors in direct transverse bending. The second section
considers the definition of normal stresses in pure bending, tangential stresses in
transverse bending of beams, calculations for strength taking into account normal
and tangential stresses.

The third section considers the definition of displacements in direct bending
using the differential equation of the elastic line and the Mohr integral. The fourth
section presents the concept of geometric characteristics of the cross-sections of
the rods. The fifth section provides calculation schemes and numerical data for
individual calculation and design tasks, as well as examples of their solution and
design.



1. BENDING OF STRAIGHT BEAMS

1.1. Classification of bending and types of supports

Bending is a type of rod deformation in which bending moments occur in its
Cross sections.

Classification of bending. Bending is divided into transverse - when the
external load acts in the direction perpendicular to the axis of the rod, longitudinal
- when external forces act along the axis of the rod and longitudinal - transverse.

Transverse bending is divided into flat, in which the bending forces lie in
one plane, and spatial, in which the external bending forces are arbitrarily oriented
in space.

Flat bending is divided into straight and oblique. In the case of direct
bending, the plane of action of bending loads coincides with one of the main axes
of inertia of the section.

Figure 1.1 shows the case of loading the rod during direct transverse
bending. External forces are located in the plane YOZ, which coincides with the
main axis of section Y. In oblique bending, the plane of action of bending loads

does not coincide with any of the main axes of inertia.
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Figure 1.1 - Direct transverse bending



A special case of transverse bending (Q, =0and M, =0) is pure bending,
in which the shear force Q, is zero, and the bending moment M, is the only

internal force factor in the cross section of the rod and is constant in the rod.
Consider the bending of beams. A beam is a rod that is attached to the
supports and works on bending.
The number of external connections in the supports prohibits the movement
of the beam as a solid whole. Flat supports of beams and reactive forces in them

are shown in Fig.1.2.

Figure 1.2 - Flat supports of beams

In the hinged support (Fig. 1.2, a) there is one reactive force R acting
perpendicular to the support surface (in the direction of the shown connection). In
the articulated-fixed support (Fig. 1.2, b) there are two components of the reaction:
vertical R and horizontal H. In the clamp (rigid clamp) (Fig. 1.2, c), there are three
components: vertical R, horizontal H and moment M.

For the kinematic immutability of flat beams, the required number of
external connections is three, and in the case of flat bending, the horizontal
component H of the reaction in the hinged-fixed support is identically equal to
zero. Therefore, we further use two equilibrium equations. If the number of
external transverse connections is more than two, then such a beam is called
statically indeterminate (multi-support). Types and names of beams that are found

are shown in Fig. 1.3.



Single span beam Single cantilever beam
Double cantilever beam Cantilever beam

| ;l; Aﬁo;b’ Multy-span beam
B S S

Figure 1.3 - Types and names of beams

1.2. Shear force Q, and bending moment M, as internal force factors
during bending
Let's analyze the internal force factors in the cross section of the beam in
direct transverse bending, and then formulate the basic rules for plotting diagrams
Q,and M, .
Consider a cantilever rod with a clamped right end and loaded with forces
F1 and F2 (Fig. 1.4). Let F1> F2.

gy @ :

I:' . [P .

h——

X(zz)

M

Figure 1.4 - Cantilever rod



Let's use the method of sections. We will choose a section on the first and
second sites, we will show the cut off parts, we will replace action of the rejected

parts on the left by internal force factors Q, and M, . From the conditions of

statics (the sum of projections of forces on the Y axis and the sum of moments

relative to the X axis passing through the center of gravity of the considered

section) we determine their values.

1segment: XFi=-F1+ Q,(z1)=0, fromwhere Q,(z1)=FI1;
IMi=F1-z1— M, (z2) =0, fromwhere M, (1) = F1-21.

2segment, XFi=-Fi+F,+ Q,(z2) =0, fromwhere Q, (z2) =F1 - F;

IMi=F12; - F2:(22) - M, (22-a) = 0, from where M, (22)= F1-2o — F»(22-a).
Using the following notation, we formulate the following rules for determining

the transverse force and bending moment during bending.

Shearing Forces in the section — Q,(z) is numerically equal to the

algebraic sum of projections on the normal (Y axis) to the axis of the rod of all
forces located on one side of the section (all one-sided forces), and forms a
substitution of the action of the rejected part on the left.

Rule of signs. Shearing force is considered positive (positive) if it rotates

the cut-off part of the beam relative to the center of gravity of the cross-section
clockwise, and negative (negative) if it rotates counterclockwise.

Bending moments in the section — M, (z) is numerically equal to the

algebraic sum of moments relative to the center of gravity of the cross section of
all forces located on one side of the cross section (all one-sided forces), and forms
a replacement for the action of the rejected part on the left.

Rule of signs. The bending moment is considered positive (positive) if

the cut part bends convexly downwards (compressed fiber at the top,
stretched at the bottom), and negative (negative) - if vice versa. Thus, the plot
of bending moments is built from the compressed fiber.

Schematically accepted rules of signs look like this:



Figure 1.5 - Rules of signs

1.3. Differential dependences of bending
Consider a beam loaded with an arbitrary distributed load q(z) (Fig. 1.6, a)
In the cross section at a distance z we select an element of length dz (Fig. 1.6, a).

In section I there are internal force factors Q, and M, in section Il at a
distance dz from the first internal forces Q,+dQ, and M, +d M, act.

Within infinitesimal dz, the load q(z) can be considered uniformly

distributed and equal to q.
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Figure 1.6 — Beam and its element dz

Since the beam under the action of external load is in equilibrium, then each
of its elements under the action of external and internal forces is also in equilibrium
(Fig. 1.6, b).



Let's write down the conditions of statics:
1. > F =0, Q,-Q,~dQ, +qdz=0, fromwhere qdz-dQ, =0, so

dQy
oz

q (1.1)

2. >Mx=0 ; —MX+q-dz-d22—(Qy+de)-dz+Mx+dMX:O, giving

similar terms and despising infinitesimal second-order in comparison with

infinitesimal first-order, we obtain: - Q,dz + dM, =0, from where :

dM,
= : 1.2
Qy dz ( )
3. Substituting expression (1.2) into the dependence (1.1), we obtain:
d 2
_9Qy _d My (1.3)
dz dz?

Differential dependences (1.2) and (1.3) allow us to establish some features of the
distributions of shearing forces and bending moments.

The following rules can be used to build and test diagrams M, and Q, .

1. On segments where the distributed load is absent (g=0), the diagram

Qy is constant, and the diagram M, represents a linear function.

2. On segments with evenly distributed load q, the diagram Q, is linear,
and the diagram M, is a square parabola, and the convexity of the parabola is
directed in the opposite direction of the distributed load. At the point z=z"
where the transverse force Qy(z*) =0 (changes the sign), the moment M,

reaches an extreme value (M M

Xmax ! xmin)'

3. In areas where Q, =0 the plot M, is permanent.

4, The following points are formulated for the right z axis (for the right

coordinate system). In the area where the shearing force Q,is positive, the

moment diagram M, increases and decreases - if Q, negative.

9



5. In sections where external concentrated forces are applied to the
beam:

a) on the plot Q, there are jumps in their magnitude and in the direction of
the applied concentrated forces;
b) fractures appear on the plotM, , and the edges of the fractures are directed

against the action of concentrated forces.
6. In sections where concentrated moments are applied to the beam,

jumps on the magnitudes of these moments are observed on the M, plot.

7. The diagram Q, is a diagram of the first derivative of the moment M,
function, ie the ordinates Q, are proportional to the tangent of the angle of

inclination tangent to the diagram M.

Next we will consider examples of construction of diagrams of shearing

forces Q, and bending moments M, .

Example 1.
We show the current section with the coordinate z (Fig. 1.7), the limits of its

change, write the functions Q, and M, . When taking into account the evenly

distributed load ¢, we use the following method: replace it with the concentrated

force q-z applied in the middle of the section (shoulder of concentrated force

0,5-2).

2
0<z</= Qy(z):q-z;MX(z)z—q-Z2 . Next, calculate the value Q,

and M, :

10
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Figure 1.7 - Cantilever beam with evenly distributed load g

q-(
5,
According to the diagram, using the rules of verification, determine the reference

z=0=>Q,=0 ; M;=0; z=(=Qy=q-/; M, =-

X

reactions R, and M ,. The reaction R, =q-¢ is equal to the magnitude of the

jump on the plot Q, in this section and is directed upwards because Q, is
positive. If you build a diagram Q,, going to the left, the reaction R, should
give a positive value Q. , ie should be directed upwards. From the conditions of

statics > Fyj =R, —Q-/=0 we obtain the same value Ry =q- /.

2
On the plot M, in the jamming of the momentum jumps by magnitude g ; :

2
therefore M, = q-!

. Due to the fact that M, in the clamp is negative, M ,

must be directed counterclockwise. From the condition of statics

q-4°
S

ZMAi=—CI-€-§+ M, =0 weobtain:. M, =

11



Example 2.
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Figure 1.8 - Single span beam with evenly distributed load q

1. Let's define basic reactions.

> M, =0, RB-K—q%-i:O, from where: RB:qz'f

2 .Mg =0, —RA-€+q-£-§:0,fromwhere RA:qZ'(

Verification: » F; =0, Ry +Rg —q-ézqz'g+qz'g—q%50-

The scheme of the problem is symmetric, so both reactions are equal to half
the external load.

2. We show the current section with the coordinate, the boundaries of its
change and write down the functions Q, and M, :

0<z</ =>

2 2
q-?¢ . z z 1
2)=9-z-Rg=q:-z— ; M, (2)=—Q- - +Rg-z=—Q-—+Q-_-Z.
Q,(2)=q¢ B =0 5 x()qz B q- +a-
Next, calculate the value Q, and M, :

12



z:o:Qy:—q;,MX:o ,z:£:>Qy:+q;,MX:O .

Note that at the point where Q, = qz" — q; =0, the bending moment M, must be

of extreme magnitude. So, 7" =§ and
) 2 2 2

Mxmax:—qzi‘i'%f:—qf +q€ =q£ :
2 2 8 4 8

Example 3.

il I
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Figure 1.9 - Singlr span beam with two forces

1. Due to the symmetry of the problemR, =Rg =F.

2. Write down the functions and determine the characteristic values Q,, M,

for the plots.

Istsection: 0<z<a = Q. (z1)=Ra=F; M,(z1)=Rp-7;

13



2,=0=>M,=0;, zg=a=M, =Fa.
2nd section: a<z,<(/—a) = Q,(z;)=Ry,-F=F-F=0
M, (z,) =Rpz, —F(z, —a) =Fz, - Fz, + Fa=Fa..
The shearing force on the section is zero, so M, =const, the section undergoes
pure bending.
3rd section: 0<zz<a = Q,(z3)=-Rg =-F; M,(z3)=Rg - z3;

23=0=>M, =0, z;=a=M, =Fa

Example 4.
Y
F=iH
FTY Y YN YN Y YN YNYYNYNYYNYNYNYYTYTRTTYY h_z
=2t [ ~ 5 -
=111 F=4m 7rrior h=1n
o 4. | A
WR‘.-}.;=4M‘I RB_ﬁKH
Z3 | Z3

Figure 1.10 - Double cantilever beam

1. Reactions of supports.
>Mp=0; M—q-4-2—-F-5+Rg-4=0; 2—-2-4-2-2-5+Rg-4=0,

d>Mg=0; M+0q-4-2—F-1-Rp-4=0; 2+2-4-2-2-R,-4=0;

Verification: > F, =R, +Rg —q-4-F=6+4-2-4-2=0.
14



3. Divide the beam into sections, show the sections on each of them, indicate the

boundaries of change for z;, determine and calculate the functions Q, and M,

Istsection: 0<z; <1 = Q,(z)=0; M,(z;) =—2kNm.

2nd section: 1<z, <5 = Q,(z;) =R —q(z; -1)=4-2(z, -1);

My(z2) =-M + Ry (2, ~1) - 0(z, —1)'(222_1)=—2+4-(22—1)—2.(22;1)2.

22=1:>Qy:4 kKN; M, =—2 KNm. 22:5:>Qy:—4 kKN; M, =—2 kNm.

The shearing force Q, changes the sign, the bending moment M, reaches the

extreme - the maximum value at z*, which is determined by the condition

Qy(z")=4-2(z" -1) =0, from where z* =3m, and
M, o =—2+8—4=2 kKNm.
3rd section: 0<z3 <1 = Qy(z3)=F =2xH; M, (z3)=—Fz;;

z3=0=M, =0; z3=1=M, =-2 KNm.

2. STRESS IN TRANSVERSE BENDING

In the case of direct transverse bending, a shearing force Q,occurs in the

cross section, which causes shear deformation, and a bending moment M, , which

causes bending deformation.

2.1. Normal stresses at pure bending
Consider the case of pure bending, when in the section there is only a

bending moment.

15



We show the rod before deformation (Fig. 2.1, a) and after (Fig. 2.1, b) load

bending moments M, .

Yy
z 1]
1% Eld,x
CITC] a)
stretching zone
M, b)

- neutral layer
compressed area

| p - neutral layer with a radius of curvature

Figure 2.1 - Rod before deformation and after

Observing the deformation of the orthogonal grid, previously applied to the
side surface of the beam before loading (Fig.2.1, a) and after (Fig. 2.1, b), we note
that the longitudinal lines in pure bending are curved along the arc of the circle,
the contours of cross sections remain flat, traces of which intersect longitudinal
lines at right angles. In the compressed area (in this case at the bottom) the fibers
shorten, in the stretching zone (at the top) lengthen.

There is a longitudinal layer, the length of which remains unchanged during
pure bending. This layer is called neutral. The tensile zone and the compression

zone in the beam are separated by a neutral layer with a radius of curvature p.

These circumstances allow us to introduce the following hypotheses. At pure
bending the hypothesis of flat sections is observed. All cross-sections of the rod
are not distorted during pure bending, but only rotate relative to each other around
the X-axis. Longitudinal fibers do not press on each other. Normal stresses do not

change along the width of the section.

16



It is logical to assume that at the points of cross section during pure bending
there are only normal stresses that lead to an integral internal force factor - bending

moment M, .

Due to the lack of shearing forces in the direction of the Y axis, it is obvious
that the tangential stresses are absent at the points of intersection.

Consider a rectilinear rod of arbitrary cross section with the axis of
symmetry Y with pure bending (Fig.2.2, a). In the section with the coordinate z we

apply the method of sections and get: M, =M (Fig.2.2, b).

In this section, the moment M, arises as the sum of the moments from the
distributed internal forces (normal stresses o). Let's select an elementary area dA
with coordinates X,y (Fig. 2.2, c). Let the Y axis be the main axis and the X axis
coincide with the neutral longitudinal layer.

The problem of determining the internal force factors belongs to the class of

statically indeterminate problems, so then we apply the scheme of solving statically

AE! ‘}/
=

indeterminate problems.

Figure 2.2 - Rectilinear rod of arbitrary cross section

17



Static side of the problem. Of the six equations of static equilibrium, three
equations > F, =0,> F,=0,>M;,=0 are performed identically. The

elementary force in the axial direction acting on the area dA: dN =cdA, and the

resulting force N = j cdA. The elementary moment of force dN relative to the X
A

and Y axes will be written as M, = [dNy=[oydA and dM,=dN-x
A A

Respectively bending moments: M, = [dNy = [oydA; M, = [dNx = [oxdA.
A A A A

Thus, the static conditions will take the form:

> F,=0; [cdA=0; (2.1)
A
> My, =0;[oxdA=0; (2.2)
A
> M, =0;M, — [oydA=0. (2.3)
A

Note the unknown: normal stress o - the magnitude and law of distribution;
p- radius of curvature of the neutral layer; position of neutral layer.
Geometric side of the problem. Consider the deformation of an element of length

dz. Let the fiber OO, coincide with the neutral layer, select the fiber ab at a

distance y from it (Fig. 2.3).

dz
! b
=] z
0 0,

Figure 2.3 - Deformation of different fibers
18



The original length of the fiber is ¢, =ab =00, =pd6, because the fiber

OQ; is not deformed. In the process of deformation, the length of the fiber a;b;

will be the length of the arc: ¢, =uwa,b, = p,d0=(p + y)dO. Determine the relative

deformation of the fiber ab &, = Afay _£=lo _(P+y)dO=ptd _ Y e e
to lo pdo p

longitudinal fibers do not press on each other, then, apparently, this dependence

occurs for any fiber:
g=7. (2.4)
p
This is an additional condition - the joint deformation equation in pure
bending.
The physical side of the problem. In pure bending, the longitudinal fibers are
subject to stretching and compression, so Hooke's law is valid for uniaxial stress
o =Ee.

After substituting the value of ¢ from expression (2.4) we have

s=E7Y. (2.5)
p

Substituting (2.5) sequentially into equations (2.1), (2.2), (2.3), we obtain the

following.

1. [odA=[E Yaa-= Ej ydA = ESX = 0The modulus of longitudinal elasticity
A A P Pa P

E for the material is a nonzero constant; the radius of curvature p of the neutral

layer is a finite value. Thus, the static moment of the area S, =0. Therefore, the

neutral layer at pure bending coincides with the central axis of the section, ie the y
coordinate is calculated from the neutral line of the section - the geometric location

of points at which the normal bending stresses are zero.

19



2. [oxdA=[E Yyda=E [ xydA= E l,, = 0If the centrifugal moment of inertia
A A P P a p

I, about the central axes is zero, then these axes are the main axes of inertia. Thus,

the XY axes are the main axes of inertia and the neutral line is the main central axis

of inertia, it is perpendicular to the plane of action of the load.

3. M, —[oydA=M, — [E ¥ ydA=M, — = [y?dA=M, — =1, =0 whence the
A A P P A P
curvature of the neutral longitudinal layer is determined by the expression:
1_Myg (2.6)
p Ely

which is called the Navier equation. Here Jysz: I, is the axial moment of
A

inertia of the section, and EIXx is the stiffness of the rod during bending.

Comparing the values of curvature 1 from equations (2.5) and (2.6) we

P
obtain:
1_o
p Ey c M,
= = .
1M, Ey El,
p Ely]

The formula for determining normal stresses takes the form:
M
o= Y 2.7)
IX
From the obtained formula it follows that the normal stresses along the height of

the section change linearly, because the bending moment M, and the moment of

inertia Ix of the cross section are constant. Figure 2.4 shows the distributions of

normal stresses in height for different cross-sectional shapes.

20



Maximum stresses o, occur at the farthest points from the neutral line

at y =Y. - thatis

\ ~= n.l b4
( n.l.
c Onax
St
=
=
n.l. z %
R X
7
M, [=
UrII]mx

Figure 2.4 - Distributions of normal stresses in height for different cross-sectional

shapes

M, : :
Omax = lema‘x which must be compared with the allowable stress [c].

X

Thus, the bending strength condition takes the form

= Mmax Yimax. < 5] (2.8)

Gmax I
X

In practice, this form is used to calculate sections with one axis of symmetry (Fig.

: I : : .
2.4, b). Given the fact that W, = —*— - the axial moment of resistance, it is more
Ymax

convenient for sections with two axes of symmetry (Fig. 2.4, a) to use the condition

of bending strength in the form:

21



O max =MV)§/”"’IXS[G]. (2.9)
X

In the case of transverse bending, when the shearing force Q, is not equal to zero,

there is a curvature of the cross sections, and the hypothesis of flat sections is not

true. Studies show that with respect to the length ¢ of the rod to the height h of the

i 14 .
Cross section H28 (for most beams) we can assume that the cross section is

practically not curved, then formula (2.7) for determining normal stresses is valid

for transverse bending.

Example. Determine the dimensions of different shapes of cross sections, if the

bending moment in the cross section M, =80 kNm, the allowable bending stress

[c]=160 MPa.

. M : :
From the condition of strength o, = V)ilmax <[o] section modulus of section
X

Mymax _ 80-10°
[6] 160-10°

Next, design a section (Fig. 2.5).

W, > =0,5-10"3° =500 cm?.

1. Rectangular section (Fig. 2.5, a), for which the ratio % should be set (take

2
Ny =2). section modulus szﬁ:g
6 3

b=3/750~9 cm. Height of section h=18cm, cross-sectional area

b3 =500cm®, from where

A =bh =2b? =162cm?,

22



2. Rectangular section for which the ratio E:; (Fig. 2.5, b). By analogy: the

2 3
section modulus W, = bg = 24 =500 cm?, from where b =3/12000 = 22,8 cm,

h=114 cm, A=228-11,4=260 cm?.

h _ h
5 =1 E= 0.5
YJL YJL Y
s T
= =
11T
} |
b= &
a) b) c) d) e) f)
h=18cm | h=11,4cm | d=17,dcm | D=20,4cm || No30a ]
b=9cm b=22,8cm d=16,32cm No33
162cm? | 260cm? 229cm? 115cm? 50cm? 47cm? A
3,24 5,2 4,58 2,3 =1 =1 Aopt/A

Figure 2.5 - Different shapes of cross sections

3. Circle section with a diameter of d (Fig. 2.5, c). Axial section modulus
3
W, :ngdz~0,1d3 =500 cm? whence the diameter of the section

2 2
d =2/5000=17,1 cm, area A= ni _T 147’1 =229 cm?.

4. Circular hollow section (Fig. 2.5, d). Set by the ratio of diametersoczg,

3
section modulus W, = nsDz(l—oc“) ~01D3(1-a*) =500 cm?. Let a=08

23



then D= 1/150;24 =204 cm, d=204-08=16,32 cm, area

2
A:“Z(l—az)

5. I-beam section (Fig. 2.5, e). Select the I-beam number with the nearest larger

2
_m-2047 22’4 (1-082) =115 cm?.

value of the section modulus to the calculated value. For the I-beam Ne 30a:
W, =518 cm?, A~50cm?.

6. Channel section (Fig. 2.5, f). Select the channel section beam number with the
nearest larger value of the section modulus to the calculated value. For the

channel section beam Ne 33 W, =484cm®, A~47cm?,

Taking the ratio of individual areas to the area of the rational cross section
(I-beam, channel), we obtain the coefficient of material consumption. Let's make
the table (Fig. 2.5) from which it follows that the most rational are I-beam and
channel sections in which the smallest area of cross section and the smallest

expense of material.

2.2. Tangential stresses at transverse bending
The shear force in the cross section causes tangential stresses t, which
coincide in the direction with it, do not change along the width of the cross section

and are determined by the formula of D. Zhuravsky:

Q,S8:"
b1 (2.10)
Yy X

T

where Q, is the shearing force acting in the cross section; 1, - axial moment

of inertia (second area moment) of the section relative to the Central axis X (neutral

line); b, - section width at the level y from the neutral line where the tangential

cut cut
S x =A

stresses are determined; "Ye - the absolute value of the static moment

relative to the central axis X of the part of the section that lies above or below the
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level where the tangential stresses are determined. The strength condition of

tangential stress in transverse bending is written in the form:

SCUt
rmaX:Qy”;‘X XM <[r] . (2.11)

y"x

Thus, with direct transverse bending we have the conditions of strength for normal
o and tangential T stresses. The main condition is the strength of normal stresses,
and condition (2.11) of tangential stresses, as a rule, is checked. The use of D.

Zhuravsky's formula will be analyzed by examples.

2.3. Distribution of tangential stresses for a rectangular section

In the cross section there are Mx moment and shear force Q,, directed as shown

in Fig.2.6. Shear force Q,, section widthb, =b and axial moment of inertia

3
I, = blhz are specific constants (Fig. 2.6). Thus, the tangential stresses vary

according to the same law as the static moment of the cut-off part of the area

cut
Sx

0 0 .
t ¥
+ @ Gma_g=%
= 1Y X
= ¥ maE 2 A o
¥
¥
= @ = s
! ¥
E:l » [:I éfﬂaﬂ U

Figure 2.6 — Tangential and normal stresses for rectangular section
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Determine the tangential stresses at level y. The area of the cut part of the section

A°“t:b-(g—yj:b—;(l—2—gj, position of its center of gravity

4 2

2 2
st 32122 2]

Thus, the tangential stresses vary according to the law of the quadratic parabola.

Sy
_2 (h yj 2(1+ 2hy) Static moment of the cut off part of the

The maximum tangential stresses occur on the neutral line, where the normal
stresses o are zero. To determinet,, It is necessary to calculate the static

moment of half the cross-sectional area SO, and the maximum tangential

stresses will be defined as:

t
Q6Sx" max
Tmax b o
y X
. bh®  (ct _bh?
For a rectangular cross section by, =b, IX:E’ She max = g~ We have:

. _Qybn*8_3Q, _30Q
™ bbh3/12 2bh 2 A’

2.4. Distribution of tangential stresses for I-beam section

In the cross section there are Mx moment and shear force Q,, directed as shown

in Fig. 2.7.
Using expression (2.10) for tangential stresses, we determine their values at

characteristic points.

Point 1: 1, =0 because S =0 (above level 1 the truncated area is missing).

26



Points 2,3. These points have the same y coordinate, but belong to the shelf and
the wall at the same time, ie different widths b,=b; bs=d . Therefore, in the place

of transition of the shelf into the wall there is a jump of tangential stresses.

11

LI}

/ ML
3 - X
Ctramn W,
i i 1 0 Cnam
e wa— F1 Il'nq.?l' ] + 2 3 »
d M., bt %1 t + (T
- X ] : FRR T i @
4 %+ L
Q ¥
¥ d
7 T ¥ (=1
¥ & 4
2 4
b = b 1 o 0

Figure 2.7 - Tangential and normal stresses for I-beam section

— t(h-
Point 2 (belonging to the shelf): ¢, = bQ:/ bt(hz tj _ ?y (hz t);
-, )

Point 3 (belonging to the wall): t, = in bt[h;t).
"X

h

——1 cut
- S
Point 4: r4=Qy bt(h tj+d(ﬂ_tj. 2 :Qy X max

g . - static moment relative to the central axis of half the cross-sectional area,

for standard profiles are given in the assortment tables. An exemplary graph of
tangential stress distribution is shown in Figure 2.7. The actual distribution of
tangential stresses is slightly different from that obtained, because the shelves have
slopes, and the transition from the shelf to the wall is carried out along the radius

of curvature.
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2.5. Performing design calculation

1. From the condition of strength by normal stresses we determine the section

. M : .
modulus of the cross section, ie W, > [X ”j‘ax , and design the cross section.
(&)

2. Check the cross section for tangential stresses. If t ., <[t] so, the calculation
is complete. If 7., >[t] (exceeding by more than 5%), the cross-sectional

dimensions are determined from the condition of tangential stress. There is no need
to check the cross section for normal stresses, because its dimensions will be larger.
Example 1. For this scheme of loading the beam (Fig. 2.8) to determine the

dimensions of the I-beam cross section, if the allowable normal stress [¢] =150
MPa, tangent - [t] =100 MPa.

Determine the reactions:

>'M, =Fa+ F(¢+a)—Rg/ =0, Rg =45kN;

> Mg =F(/+a)+Fa—R,/=0, R, =45kN.

Check: > F, =-F +F +R, - R, =0.

1. Divide the beam into three segments, write for the current section on each section
of the expression (function) Q,and M, :

0<z <a Q,=-F=30 kN; M, =—F -z;;

0<z,<¢ Q,=-F+Rp =415 kN; M, =—F(z, +a) + R, - 2,;

0<zz<a Qy,=-F=-30 kN; M, =—F - z5.

We calculate Q,, M, in characteristic sections and build plots.
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Figure 2.8 — Plots Qy and My

2. From the condition of strength at normal stresses (where M, .. ). & dangerous

cross section is on the supports; from the condition of tangential stress (where

Qymax) @ny section on the consoles is equally dangerous. So, M = 24 KNm;

Xmax

Qymax= 30 kN.

3. From the condition of strength by normal stresses we determine the section

3
modulus: W, > Mymax _ 24-10 =016-10°m® =160 cm?®.

[c]  150-10°

We choose an I-beam Nel8a cm?, which is slightly less than the calculated value.

Other parameters necessary for calculation: 4=254cm?, 1, =1430cm* =

1430-108m* d =51 mm=5,1.103m, S5 -898 m?3=89,8-10°m3.

Xmax

Check the cross section for tangential stresses:

]  QySymx  30-10°-89.8-10°°
™ d-l,  51.107°.1430-10°°

=36,9-10° N/m? = 36,9 MPa < [1],

the strength condition is met and the calculation is completed.
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Example 2. For this scheme of loading the wooden beam (Fig. 2.9) determine the

dimensions of the rectangular section, if the ratio of the sides E: 2, the allowable

normal stress [c] =10 MPa, tangent [t] =2,5 MPa.

YJL
F=40xH F=40xH
k 4 TR‘q:"—'lGR'I‘I RE4DR£_IT ¥

E\ P B e i

=0 1m |,

Lﬁ 40 [

4 4

Figure 2.9 - Double cantilever beam

Since the load is symmetrical, the reference reactions are the same and equal to
half the external load, thus R, = Rg = 40KN.
1. Determine the shear forces and bending moments in sections.

Istsegment: . 0<zy <a= Q, =—-F=-40 kN; M, =—F - z;.

2nd segment: 0<z, </=Q, =-F +R, =0 ;

M, =—F -(z, +a)+ Ry - 2, =—40z, —40-a+ 40z, =—40-a=—4 kKNm.

3rd segment: 0<z3 <a =Q, =F =40 kN; M, =-F - z5.

On the received functions we construct plots Q, and M, . From the condition of

tangential stress, any cross-section on the consoles is equally dangerous, and from
the condition of normal stress, it is equally dangerous. any section on the span of

the beam.
2. From the condition of strength at normal stresses the section modulus :

3 2
W ZMxmaX _4-10 =0,4-103m® =400 cm?; szbgzg

_ b3 =400cm?
*7 [s] 10-10° ’
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from where : b =3 /% -400 =8,4cm, h=2b=16,8cm,

A=bh=2b?=2.8,4% =142 cm?
3. The maximum tangential stress for a rectangular section is:

) ~3Qymax _ 3-40-10°
™2 A 2.42.107

—4,22-.10°N/m? = 4,22 MPa > [t]=2,5 MPa,

the strength condition is not met.

Determine the dimensions of the cross section from the condition of tangential

_§Qymax
2 A
a_ Qymax _ 3-40-10°

2[x] 2.25-10°

Stress: T nax <[t], from which we find the cross-sectional area:

=24-103m2=240cm?

Area A=bh =2b? =240cm?, whence the width of the section: b =+/120 ~11cm,
and height h=22cm.
From the condition of tangential stress, the cross-sectional dimensions are larger

than from the condition of normal stress.

2.6. Potential energy of deformation during bending

Pure bending (Q, =0,M, #0). The potential energy of deformation during

pure bending is determined by the work of internal bending moments on the

angular displacement of the section.

JLY
- M odfxds  My——
z de Z ( | dW
, LAY 1 l Mx )M
| ® g
ZHINE ;
)% e
a) 481/ b) c)

Figure 2.10 - Pure bending of beam
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Consider the rod with pure bending (Fig. 2.10, a). Select the element of the rod
length dz (Fig. 2.10, b). Under static load, the neutral axis is curved along the
radius p of the circle, the extreme sections are rotated by an angle d6. Within the

framework of Hooke's law, the dependence between the moment M, and the angle

of rotation d6 under static load is linear (Fig. 2.10, c). The elementary work of
internal forces is determined by the area of the triangle, ie dW = ; M, do.

But the work is numerically equal to the potential energy of deformation dU ,

du :;M -d6 . From Fig.2.10b it follows thatd6 = d—z,thus, du =;M dz . The
P p
. M M2 .
curvature of the neutral axis E: X then dU =—2 dz. The total potential
p EIl, 2El,

energy of the rod is the integral of the length of the rod:

J‘ X (Z)dZ“

2El, (2.12)

l

Transverse bending (Q, #0,M, #0). As shown by calculations for rods in

which the ratio of length ¢ to section height h is greater then 8 +10 (2 >8+10),

the potential energy of deformation from the shear force Ug, is 0,4+0,5% the
potential energy of deformation of the bending momentU,, . Therefore, when

determining the potential energy of deformation during bending, only the potential

energy of deformation from the bending moment M, , which is determined by

expression (2.12), is taken into account (2.12).

3. DISPLACEMENT IN STRAIGHT BENDING.
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3.1. Differential equation of a curved axis
We obtain the differential equation of the curved axis with straight bending
(the plane of action of the loads coincides with one of the main axes of inertia).
The rectilinear axis of the beam under the action of external loads (Fig. 3.1) is

transformed into a flat smooth curve and is called an elastic line (curved axis of the

beam).
Tangent to the curved axis
Elastic line (curved axis of the beam)
v \izl gz
1—;
'-L}(z} u i
T | Wiz) -

) Z
L+ Z » TFl TF2 Mi;

Figure 3.1 - Curved axis of the beam

The deflection of the beam V (z) is the movement of the center of gravity

of the section along the normal to the original axis. The maximum deflection is

called the deflection arrow and is denoted by f. The section rotation angle 6(z) is

the section rotation relative to the original position.
The tangent of the angle of inclination tangent to the curved axis is the first
L . _ dav(z) .,
derivative of the function V(z): tg O(Z)ZT:V (z). For small angles (tg
z

0(z) ~ 6(z)) the equation of rotation angles can be written as: 8(z) =V ().

The differential equation of the curved axis of the beam is obtained using

the Navier equation, in which the curvature of the neutral axis during bending is

: M :
defined as: 1_ £ X_. On the other hand, from the course of analytical geometry
p X
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V' (2)

it is known that the curvature of a flat curve is defined as: 1 =+ 5
{L+V @
Comparing the right-hand sides of these two dependences, we obtain a nonlinear
differential equation with respect to deflection V (z):
M@ _, V'@
El, , ) 3
{1+Iv (21°}?

For small displacements (within elastic deformations), when, for example,

(3.1)

tg0(z) =V (z) < 0,01, the square of the first derivative in comparison with the unit

can be neglected. Taking into account that the signs of the second derivative V" (z)
and the bending moment M, coincide, we obtain a differential equation of the

second order, which is called the differential equation of the curved axis of the

beam for small displacements:

ELV (2)=M,(2). (3.1, a)
Consecutively integrate twice and obtain the equation for angles of rotation
and deflection:
ELV (2) =El,0(z) = [M,(2)dz +C; , (3.2)
ElLV (z)=[dz[M,(2)dz+Cyz+C,, (3.3)
where C, and C, are arbitrary constant integrations determined from boundary

conditions.

Example 1. Consider a cantilever beam loaded on the free end with a
concentrated force (Fig. 3.2).

Bending moment in cross section z: M, (z) =—Fz. Write the differential

equation of the elastic line of the beam: EI,V " (z) = —F - z. Integrating this

equation twice, we obtain in accordance with (3.2), (3.3):
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Figure 3.2 - Cantilever beam

2
EILV ()= *

+Cy;

3

El V() =

+C,;2+C,.

We will write down and fulfill the boundary conditions. When z =/ the angle of

. . F-0? _ Fe?
rotation V'(¢)=6(¢) =0, le, — +C; =0 where: C; = When z=/
3 2
deflection V(/)=0, ie: - F 6£ + k-l ¢+C,=0, from where:

F-0? F.0*  F
C2: - = - .
6 2 3

Taking into account the values C;and C,equations of the elastic line and angles

of rotation will be written as:

Fz* Fe?_ Fr3 Fz?  Fr?
ElI,V(z)=- + 7— ElLO(Z)=— "+ —— .
V@ ="z G EL@ =
The largest deflection and angle of rotation occur at the origin when z =0:
Fo® Fo®
EILV(0)=—-——, fromwhere: V(0) =V, =T = ,
NVO=-" V(O =Vinac = = -

Fr? Fr?
El,0(0)=—— , from where: 6(0) =0 = .
00)=" 0= Onac = 5
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The maximum deflections V., of the beams must be compared with the

permissible deflection [V]. Then the condition of rigidity when bending the

cantilever beam will take the form:

FI3
Vinax = f =38l <[V]. (3.4)

From here the axial moment of inertia I, > , on the basis of what we design

a section is defined. The allowable deflection is selected depending on the

responsibility of the structure from the range ——+~——)¢,where 7 is the
p y ge [V]= (100 1000)

span of the beam.

Direct integration of the differential equation of an elastic line is
cumbersome even in simple cases. Therefore, to determine the displacements in
the beams, energy methods are more accepted, which lead to simple

dependences.

3.2. Energy methods for determining displacements

We introduce the notation and basic concepts.

The bending moment from the external load M ¢ (z) = M g is denoted
or M.

asM.. Bending moment from a unit force (moment) - M,

Displacement (deflection, angle of rotation) from the external load is indicated

Aj; where the first index i is related to the point or direction of movement; the

second index j is related to the reason that caused the movement. Linear
displacement (deflection) from a unit force and angular displacement from a

unit moment are denoted &;;, where the index i is the point of the beam and the

direction of movement; index j - the reason that caused a single movement.

3.2.1. Maxwell — Mohr integral
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Consider a beam of a length ¢ loaded at point 1 by force F (Fig. 3.3).

Determine the displacement A, (at point 2 of the force applied at point 1).

1. The first condition. At point 1 we apply a concentrated force F. The deflection

atpoint 1is A;;, atpoint 2 is A,,. In sections of a beam there is a bending moment
from external loading M ,- . The force F is applied statically and performs work

W, :% -F - A, ontheway A, (see the graph in Fig.3.3.1). Determine the potential

energy of deformation, expressed in terms of bending moment, by the formula

M 2-d . . . _
(3.12): U, :j G2 . But the potential energy of deformation U, is numerically
/ X

equal to the work of external forcesw,, ie: W, =U,.

2. The second state. At point 2, we statically apply a unit force that, bending the
beam, performs the work (see graph in Fig.3.3.2) on the displacement §,,. In
sections of a beam there is a bending moment M, from unit force. The work of a

V1 2
x4z

unit forceis W, = ;-1- d,. Potential deformation energy is U, :j .Asin

4 X

the previous case W, =U,.

3. The third state. At point 2, we statically apply a unit force that, deforming the

beam, performs the work W, on the displacement 5., (see graph in Fig. 3.3.3). To

the deformed beam statically in point 1 we apply the concentrated force F which,

deforming a beam with already applied unit force, carries out work W, (see the

schedule) on displacement A, ;.
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Figure 3.3 -Three conditions of beam

Point 2 will receive another displacementA,,, and a unit force will perform the

work W, =1-A,, (see graph) on the displacement A,,. From action of force F
and unit loading in sections of a beam there is a total bending moment
(M, +M,). The work of the two forces will be defined as:

W3 :Wl +W2 +W2* :;F .All +;‘1‘622 +1'A21,

and the potential energy of elastic deformation is expressed in terms of the total

bending moment as:

(MxF+M )2 dz j|\/|XFo|z IMfder MM

Us=] | X dz.
2FI, 2EI, ) 2El, 4 EI,

1

Comparing the expressions for W5, U5, after simple transformations we obtain:
M, M
,  El,

38



The procedure for determining displacements using the Maxwell-Mohr
integral.
1. We apply external loading, we define basic reactions, we break a beam into

sites, we write down expressions (functions) of the bending moment M, for

each site.
2. At the point, the movement of which is determined, apply:
a) Unit force in determining the deflection (linear displacement),
b) The unit moment in determining the angular displacement.
Determine the support reactions and in the same order as for the external load,

write the expressions (functions) of the bending moment M, at each section.
3. Substitute the functions (expressions) M., M, in the Maxwell-Mohr integral

and make the appropriate calculations.

4. The result of the calculations is positive if the direction of the applied unit load
coincides with the direction of actual movement, and negative if the direction
of the applied unit load does not coincide with the direction of actual movement.

Example 2. Cantilever beam of constant cross section (El,=const) length ¢ loaded

at the end of the concentrated force F (Fig. 3.4, a). Determine the deflection V,

and angle of rotation © , at the end of the console.

Y
6, *F
A
a) ' *
W ]j z
4 _/“Ef ;
M:l
b) -
7
1
0 R b
-l .{ Z

Figure 3.4 — Algorithm for determining displacements
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1. Write the function M, =—Fz (Fig. 3.4, a).

2. Atapoint A, apply a unit force (Fig. 3.4, b) and write the function

M, =-1-z.
3. Substituting Mg, M

« Into the integral, we  obtain:

1 3

V. =
ATEI

(see example 1 in Fig. 3.2).

‘
[F-z-z-dz= Fe
3E

X 0 X
4. To determine the angular displacement at a point A, apply a unit moment (Fig.

3.4, c) and write the function M, =1.

5. Substituting M,, M, into the integral, we  obtain:

=K

1 ¢
[(-F-2)-1-dz=- .
2EI,

Ely 5

9A=

The result of the calculation of the deflection Vv, is positive, because the applied

unit force coincides with the direction of the actual movement. The result of

calculating the angle of rotation 6 , is negative, because the applied unit moment

in the direction does not coincide with the actual direction of the angle of rotation

of the section at the point A.

3.2.2. Geometric method of calculating the Maxwell-Mohr integral. The
method of multiplying plots
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Figure 3.5 - Multiplying plots due to Vereshchagin's rule

r

Vereshchagin's rule. Using the geometric interpretation of the definition of the

integral as the value of the area, the Mohr integral to determine the displacements
in the beams of constant cross section can be calculated using a special operation
on the plots of the corresponding bending moments.

As a result, we obtain:
OxF - I\WXC

Aj =JMXFMX dz = : (3.6)
)Rl El,

where o, is the area of the load (from external load) plotM ,; M, - ordinate
taken from a single plot (from unit force) M, below the center of gravity C of the

load plot.

Rule of signs. If the multiplied plots lie on one side (both above or below), the

product is positive; if the multiplied plots lie on different sides - the product is

negative.
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If the plot of the external load is piecewise linear in sections, and a single
plot is always piecewise linear, the result of multiplication does not depend on the

order of use of the coefficients, ie:

Oyr 'MXC _(DX'MFC

, 3.7
El, El, 3.7

where o, is the area of the plot from the external load; wx- plot area from a unit
load; M . - ordinate under the center of gravity of a unit plotM,, taken from the
plot M, from an external load.

If the plots M -, M, consist of several sections, the multiplication is

carried out by sections, and the result is summed, ie:

(3.8)

Note that in the considered problems the plots of load and unit bending
moments consist of rather simple areas: rectangle, triangle, parabolic triangle, etc.
The table shows the areas o and the coordinates of the centers of gravity z. of flat

figures found in the plots.

N 2 & Z:
4 . £ i
1[ o C he %f ﬂ > Lop 1,
| J_ 3 4
Ze Zc
4 =i + 4 '
i |c Fhe ol /c- e =
Ll I
C ) I,

When solving specific problems, it is advisable to use the trapezoidal rule
for multiplying linear diagrams and the Simpson-Karnaukhov rule for multiplying

any diagrams (in most cases nonlinear).
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Figure 3.6 - Trapezoid and Simpson-Karnaukhov rule

Trapezoid rule (only for linear plots - Fig. 3.6, @). In the case when the plot M ¢

(from the external load) is linear, the multiplication of the plots can be performed
according to the trapezoidal rule. The result of multiplication of linear plots on a
plot of length ¢ is equal to:

A=' (@d+b-c+2-a-ce2-b-d).
6El,

Rule of signs: if the ordinates that multiply are one sign (lie on one side), the

resulting product is positive, if the signs of the ordinates are different - the product
IS negative.

Simpson-Karnaukhov rule (for linear diagrams and diagrams described by a

square parabola, Fig. 3.6, b). The result of the product is as follows:

o
6El,

A (hyhy +hyh, +4hghy) .

Here hy, h, are the extreme ordinates of the load plot (nonlinear) on the site; hi, h»
- extreme ordinates of a unit plot (linear) on the site; hyand hy- the average

ordinates of the plots on the site. The rule of signs when multiplying ordinates is

similar to the rule of trapezoid.
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Example 3. For a cantilever beam loaded with external forces, as shown in Fig.
3.7, determine the deflection and angle of rotation at the end of the cantilever in
the section A.

1. We define support reactions.

> Fi=0,F-qg-3a+Rg =0=Rg =2qa.

> Mg =0; —F-6a+q-3a-35a—Mg =0=Mjy =15qaZ.
Check:
> M =-q-3a-25a—M +Rg -6a— Mg =ga’(-7,5-3+12-15)=0.

2. We write down the expressions Q, and M, , build the corresponding plots.
0<z <a: Qy=F=0a; M,=F-z =qgaq-z.
0<z,<3a:Qy,=F-0-2,=0a-q- ;.

Shear force changes sign at z =a.

22 22
M, =F(z, +a)—q22:qa(z+a)—q22.

My yax =My ‘ 7=a 2qa2 - 0,5q32 :LSqaz;

2
_qa2(25- >

_ 2
1-15a 5 )=13750a°“.

M,

0<zz<2a:Q,=-2qa; M, =-Mg +Rg -z=-15qa* +2ga- z.

3. At the point A, we apply a unit force, build the plot M, =-1-z, defining the

ordinates at the borders of each section.
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Figure 3.7 - Cantilever beam loaded with external forces

4. By multiplying the plots M, and M, , we determine the desired deflection:

4
A :qa [_E.l.l.g.1+§(—1.1+4.0’5_4.1’375,2’5)+g(_2’5.6+
El, 2 376 6
4 4
+4-15-2.25-4+2-15-6)]= © [2-3825-22]=— 100 0
6EI, El,

Here, on the first section, the multiplication of epurs is performed according to
Vereshchagin's rule; on the second - Simpson rule, on the third - trapezoid rule.
The minus sign indicates that the section moves up under the action of an external

load.
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5. At the point A, we apply a unit moment, build the plot M, =1. Multiplying it

by sections with a load plot, we determine the angle of rotation of the section A.

3
eA:qa 3.1.1.14_§(1.1_0’5.1+4,1’375,1)_|_
El, "2 6
3 3
2051-151+2.251-2.150]= 2 o543+77= 428
X X

Here, on the first section, multiplication is performed according to Vereshchagin's
rule, on the second - Simpson's, on the third - trapezoid. The result of the
calculations is positive, therefore, the direction of the angle of rotation of the

section A coincides with the direction of the unit moment.
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4. GEOMETRIC CHARACTERISTICS OF CROSS SECTIONS

The resistance of the rod to various types of deformation depends not only
on its material and dimensions, but also on the shape of the cross section and its
orientation.

The main geometric characteristics of the object's cross-sections, which determine
its resistance to various types of deformation, include cross-sectional areas, static
moments, moments of inertia and moments of resistance. These characteristics for
sections of a simple shape can be determined using special formulas, and for

profiles of standard rolled steel (angles, channels, I-beams) - by tables of standards.

4.1. Static moments of section
Consider an arbitrary figure (cross-section of a beam), associated with the
coordinate axes Ox, Oy (Fig. 4.1). Let's select an element of the area dF with

coordinates X, Y.

Figure 4.1 - Section of an arbitrary shape

By analogy to the expression of the moment of forces relative to any axis,
expressions can also be formulated for the moment of area, which is called the

static moment of the section and is defined as
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S,=[ydA; s, =[xdA . (4.1)
A A

Static moments are expressed in units of cubic length (m?).

Let Xc, Yc be the coordinates of the center of gravity of the figure.
Continuing the analogy with moments of forces, the following expression can be
written on the basis of the theorem on the moment of uniform action:

Sy=Ayc; S, =AXc,

where A is the area of the figure. Then the coordinates of the center of gravity

(4.2)

The static moments of the area relative to the central axes (axes passing
through the center of gravity) are zero. To calculate the static moments of a
complex figure, it is divided into simple parts, for each of which the area and
position of the center of gravity are known. After that, the static moment of the
area of the entire figure relative to the given axis is determined as the sum of the

static moments of each part.

4.2. Area moment of inertia
The axial (equatorial) moment of inertia of a section is called the integral of
products of elementary areas by the squares of their distances to the considered

aXes,

|, = J' yidA I, = szdA; (4.3)
A A

The polar moment of inertia relative to a given point (pole 0) is called the
integral of products of elementary areas by the squares of their distances from the

pole,
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|, =[p%dA (4.4)
A

The centrifugal moment of inertia of the section is called the integral of the
products of the planes of the elementary plots at their distance from the coordinate

aXes,

Ly =[xydA . (4.5)
A

Moments of inertia are measured in units of length in the fourth degree (m?).

Moments of inertia |, |

«» 1y, |, are positive values and are related to each other by a

simple relationship that follows from the equation p?=x*+y? (Fig. 4.1):
I, =1,+1,. From this dependence follows the property of invariance (constancy)

of the sum 1, + 1, when the coordinate axes are rotated. Since when rotating the

axes X,, Y; (Fig. 4.1) the value p for each area dA does not change, then

e+l =Tg+1, . (4.6)

X

Note that the moment of inertia of a complex section is equal to the algebraic sum
of the moments of inertia of its parts.

The value 1,, can be positive or negative depending on the location of the X, Y
axes. A simple and practically important example when 1,, =0, is the case of a

symmetric section. Let, for example, the Y axis coincide with the axis of symmetry
of the section (Fig. 4.2).
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Y - axis of symmetry

At ‘/d:\
Dl
NI

Figure 4.2 — Symmetrical section

Then, for each area dA with positive XY, there will be a symmetrical area

dA with the same size, but already negative XY. In sum, the centrifugal moment

of inertia of these two platforms, and therefore I, of the entire section, will be

Zero.

4.3. Moments of inertia relative to parallel axes

(Parallel axis theorem)

Often, when solving practical problems, it is necessary to determine the
moments of inertia of a section relative to axes oriented in different ways in its
plane. Therefore, it is important to establish dependencies between the moments of
inertia of the same section relative to different axes.

Let the moments of inertia relative to the central axes X,Y be known, and it
IS necessary to determine the moments of inertia relative to the axes that are parallel

to the central axes. (Fig. 4. 3).

Figure 4.3 - Parallel transfer of coordinate axes
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The distances between the axes are equal to a and b. Coordinates x1, y1 and
X, y are related by the following dependencies: x;=x + b, yi1=y+a.

Substituting these expressions into the integrals of the moments of inertia,
after performing the appropriate transformations, we obtain the transition formulas

for parallel axes:

l,=1,+a’A ,

4.7
I =1, +b%A (4.7)

gy = 1y +ab A

Note that the coordinates a, b, which are included in the last of these
formulas, should be substituted taking into account their signs. Formulas (4.7)
show that of all the moments of inertia relative to a series of parallel axes, the

central moments of inertia will be the smallest.

4.4. Moments of inertia when turning axes
Let the moments of inertia of an arbitrary figure relative to the coordinate
axes X,Y be known. Let's turn the X,Y axes to the angle o counterclockwise,

considering the angle of rotation of the axes in this direction (Fig. 4.4).

Figure 4.4 - Rotation of coordinate axes
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Having expressed the coordinates of an arbitrary elementary platform in new
axes through the coordinates of the previous system, after the appropriate

transformations we obtain the transition formulas when the axes are rotated:

lg =Il,cos”a+1,sin"a—1,sin2a
_ -2 2 -
I,y =1sin“a+1,cos”a+1,,sin2a (4.8)

lay1 = |XyCOSZO(—%(|y - IX) sin2a .

Note that these formulas obtained by rotating any system of mutually perpendicular

axes are naturally also valid for the central axes.

4.5. The principal moments of inertia

Formulas (4.8) make it possible to establish how the moments of inertia of
the section change when the axes are rotated by an arbitrary angle o.
For certain values of the angle a , the axial moments of inertia reach a maximum
and a minimum. The extreme values of the axial moments of inertia are called the
principal moments of inertia.
The axes relative to which the axial moments of inertia have extreme values are
called the principal axes of inertia. The main axes of inertia are mutually

perpendicular. The main central axes, the location of which is determined from

21,

=1 (4.9)

tg 20{0 =

The two values of the angle o obtained from formula (4.9) differ from each other
by 90° and give the position of the main axes, one of which is the axis of maximum
(relative to it the axial moment of inertia of the section is maximum), and the
second is the axis of minimum (relative to it the axial moment of inertia of the

section is minimal).
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The main moments of inertia 1., 1., are determined by the formula , which

can be easily obtained from dependencies (4.8) and (4.9):

Imx:lyglxi\/(ly—lx)2+4|fy_ (4.10)

min

4.6. Moments of inertia for some sections
Consider simple cross-sections in the form of a rectangle and a triangle with
bases b and height h and a circle with diameter D. We need to find their moments

of inertia relative to the central axis X.

Solution.

According to the definition of the axial moment for a rectangle

b b

bh? bh® D4 aD*
IX:_ IX:_ IX:—’ Ip:—

12 36 64 32

Figure 4.5- Common cross-sections

=

2 2 2y b’
=]y Ihy =15 (4.11)

2

The formula for the axial moment of inertia of a triangle 4.12 (Figure 4.5, b) and
the formula for the axial moment of inertia of a circle 4.13 are derived similarly.
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(4.12)
7ZD4
" =Tes (4.13)
The polar moment of inertia of the circle is determined
b
| =Ip2dA=2ﬂzp3dp=ﬂ?E)24 . (4.14)

It should be noted that the last value is two times greater than the axial

moment of inertia of the circle. This also follows from the equation
I, =1,+1,=2l,,since foracircle I, =1,.

The radii of inertia of the figure are called quantities

.y (4.15)
==, i,=.- .
VA Y VA

4.7. Resistance Moment (section modulus)

The resistance moments (section modulus) of the figure are the ratio of the
corresponding moment of inertia to the distance to the farthest point.

Axial
IX
W, = ,
Yirex (4.16)
|
W, = :
Xmax
Polar
I p
W, = .
Prrax (4.17)
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5. GENERAL INSTRUCTIONS FOR PERFORMING CALCULATION
AND DESIGN WORKS AND THE REQUIREMENTS FOR THEIR
FORMATION

Resistance of materials occupies the most important place among the
fundamental disciplines in the cycle of general engineering training of students.

The goal of the course is for future engineers to acquire practical skills in
strength calculations.

When starting work, the student must:

study the theoretical material of the corresponding section of the course
according to the synopsis and additional educational literature;

work through examples and problems that were solved at lectures and
practical classes;

analyze the initial data and the statement of the problem and outline a plan
for its implementation;

make initial presentations: draw the diagram of the beam, write down the
formulas and equations necessary for solving the problem (equation of static
equilibrium, etc.).

draft the task and, if necessary, consult the teacher.

Calculations must be made in a general form with intermediate statements
in ordinary or decimal fractions, keeping three significant figures everywhere. To
build the graphs of internal force factors, stresses and displacements, it is necessary
to correctly choose the scale along the coordinate axes, mark the appropriate
parameter and its dimension, and then draw a graph based on the required number
of points.

The assignment is subject to credit if the following conditions are met:

the finished version of the calculation and design task was passed and the
correct answers to the control questions were given;

the control tasks at the consultations were solved.
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The final version of the task is drawn up on sheets of A4 paper.
Output data:

o load diagrams of five beams /Table 5.1/,

o magnitudes of external forces and geometric dimensions of the beams,
strength characteristics of beam material (yield strength for steel and strength
limit for cast iron), safety factor /Table 5.2/,

o configuration of the complex cross-section of the beam /Table 5.3/.

Task execution procedure.

1. Construct diagrams of internal transverse forces and bending moments for all
beams.

2. Selecta number of simple sections of the beam marked by the teacher according
to the condition of strength under normal stresses and make a comparative
analysis of the degree of their rationality.

3. Determine the margin of strength nt° of the same beam, if its cross-section has
a complex configuration /Table 5.3/.

4. Determine the permissible value of external forces for one example of a beam
from the table 1.

Solution plan

1) According to the given option, draw the calculation schemes of the beams
together with their load, observing a certain scale.

2) For each beam, determine the support reactions (numerically or in general

form), make expressions and calculate the internal forces Q, , M, inall areas,

draw their diagrams and check the correspondence of the diagrams to the
differential ratios between the force factors during bending.

3) For each beam, find the dangerous section from the point of view of strength
under normal stresses and determine the maximum bending moment Mxmax by
module.

4) Calculate the permissible stress.
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5)

6)

7)

8)
9

Determine the necessary axial moment of resistance Wy from the solution of the
strength condition.

Select simple sections in the form:

— a rectangle with aspect ratios h/b=2;

— a rectangle with the inverse aspect ratio b/h=2;

—acircle;

—aring in which a=d/D=0.8;

— |-beam.

Calculate the cross-sectional area. Submit the obtained results in the form of a
table (see the appendix).

For dangerous cross-sections of the I-beam, construct normal and tangential
stress distribution graphs with calculation of their values at characteristic points
of the cross-section.

In the section of the I-beam beam specified by the teacher, find its deflection.
For a beam of complex cross-section, calculate the margin of strength n{°
relative to the yield point. For this you need:

— determine the coordinates Xc, Yc of the center of gravity of the cross-sectional
area, as well as the position of the main central axes;

— find the neutral axis and the distance from it to the farthest cross-section point
Y max;

— calculate the axial moment of inertia Ix relative to the neutral axis X;

— find the largest stresses omax in the cross-section of the beam and construct
the graph .

— calculate the margin of safety n;°.

10) Select the allowable value of external forces for the generally given beam

scheme according to the condition of strength under normal stresses. Accept the
material of the beam - cast iron KCh 30-6 with different values of yield strength

in tension-compression and a complex cross-section of its version /Table 3/.
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Continuation of the

Table 5.1
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Continuation of the
Table 5.1
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Steel : 67 =300 MPa;
Cast iron KCh30-6: or*=190 MPa, 61 =210 MPa .
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Continuation of the

Table 5.3
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Task performance sequence

First, it is necessary to build the graphs of the internal force factors during
bending for all the beams of the variant of the task. The strength condition under
normal stresses must be fulfilled at the most dangerous point of the dangerous

section:

o= XMy, <[o]. (5.1)
X

Or for sections symmetrical about the neutral line:

G:Wg[c]. (5.2)

The section where the maximum in absolute value bending moment Mxmax

acts on the My plot is considered dangerous.

The dangerous point in the section has the Ynax coordinate and is located at

the greatest distance from the neutral line - the X axis.

The permissible stress is determined by the formula:

_or
[o]= o (53)

The necessary moment of resistance is found from the condition of strength

M
Wy > Xmax (5.4)

[o]
The selection of the necessary dimensions of the cross-sections of the beam

is carried out as follows:

o foral-beam, the profile number is determined by comparing the found moment
of resistance with the assortment data;
o forarectangle, the axial moment of resistance is determined by the dimensions
of the sides h and b as:
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bh?
Wx ="¢"

where h is the side of the rectangle perpendicular to the X axis.

Because
h/ _ —9-
b_k, [ k=2:05/,
3
then b= % and Wy = h%k from where h=3/6kWy ,
Cross-sectional area A=bxh

3
nd
a for a circle Wy =32z0.1d3, then d =3/10Wy and the cross-sectional area is

A_ndz
- %
D3

a for the ring Wy :32(1—oc4)z0.1D3(1—a4), where az%; d, D are the

inner and outer diameters of the ring, respectively. Area of the ring

A:“Zz(l—a“).

Determination of the safety margin of a complex section:

1. According to the parameter L (Table 5.2) and the assortment of standard
profiles, set the characteristic dimensions of the section and depict it,

observing the scale.

2. Break the cross-section into such simple component parts, the center of

gravity of which and the axial moments of inertia are known or easily found.

3. For each constituent part of the section, determine and draw its own main

central axes X;, Yi.

4. Calculate the coordinates of the center of gravity of the complex section:
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N N N N
2 Svi 2 AX 2Sxi  2AYG

XC — IT\ll — I=lN , Y| — IZI\JI. — |:1N ’ (55)
hEh ook

where Sy, Sxi — static moments of the i-th component of the cross-section

relative to any fixed system of axes X,,Y,; Xgi,Yci— coordinates of the

centers of gravity of the i-th component of the cross-section in the selected

coordinate system X, Yy; Ai is the area of the ith component of the section. The

summation in (5.5) is carried out by the number N of constituent parts of the
section.
5. Draw the main central axes X, Y of the complex section.
6. Determine the axial moment of inertia Ix of the given section, taking into
account the following:
if the main central axes X;, Y; of the constituent part of the section are

parallel to the main central axes X, Y, then

() =1x +aiA (5.6)
where
a; — iIs the distance between the X and X; axes;
Ixi — the moment of inertia of the component part of the section relative to
its own axis X; ; the moment of inertia of a complex figure relative to the
main central axis is equal to the sum of the moments of inertia of its

component parts relative to the same axis:

i=1
So,
N
I = (1 +afA) - (5.8)
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Find the maximum stresses using formula (5.1).

7. Calculate the margin of strength of a complex section according to (5.9)

e
= o 69

It is sufficient to construct normal and tangential stress distribution graphs
only for a beam of I-beam section. Determine the contours of normal
stresses o in the section where Mxmax acts, and find the distribution of
tangential stresses t for the section with the maximum by module shear
force Qymax. On the plot o, mark the zones of tension and compression, and
on the plot - the direction of the vector of tangential stresses. Calculation of
tangential stresses t should be carried out according to the formula of D. I.
Zhuravskyi (5.10) for characteristic points of the section:

— the furthest from the neutral axis;

— that lie at the junction of the I-beam shelves with the wall;

— lying on the neutral axis of the section:

Qe S (5.10)
b-1,

here Qvmax 1S the maximum internal force in the beam by modulus;

SxUt — static moment of the cut-off part of the cross-sectional area at the

level where the tangential stress relative to the neutral axis X is determined;

Ix — axial moment of inertia of the section;

b —is the width of the cross-sectional area at the level where the tangential

stress is determined.

8. Movements (deflection) in beams are found according to the energy method

using Mohr's integral:

V :jMdz , (5.11)
| Ely

which can be calculated by Vereshchagin's rule.
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|
V:E—Ii . (5.12)

In relation (5.12) Mx — plot of bending moment from external forces;

M i—the plot of the «fictitious» bending moment from the unit force applied
in the section where the deflection is located.
It should be taken into account that the expression (5.12) can be calculated

by a graphoanalytical method according to the formulas given in Fig. 5.1,

while the general curves of bending moments My, M i must be divided

into parts within which the specified functions remain unchanged.
9. Choose the permissible value of the external force according to the strength
conditions for a complex cross-section, taking into account the different tensile

and compressive properties of cast iron.

ar Il I
i R e sant [

I
/ 2

7
2
(ac+bd+4f f,)

L (2ac+2bd+advbe) L

Figure 5.1 - Graphoanalytical method
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Appendices

Appendix 1 - A sample task

A sample task 1]
Initial data: nt = 1.5, L =10 cm M= &0 s = IO
. . RL=20xH
The material of beams Nel- 4 is steel C‘l, Lbddm
2 2w Ia
yield stress o =300 MPa
E=2.10°MPa «Er ES]| P
The material of beam Ne5 is cast iron P
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+
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Continuation of appendix 1

Calculation of beam No4:

1. Determination of reactions

M, =0 Fy1-0,2-1-My+Rg-3=0; Ry =(-20-1+20-2:1+10)/3=10 .

>M,=0;, F;-4—R,-3+0,-2:2=M,=0; Ry =(20-4+20.2.2-10)/3=50
Check: yF, -0; Ry+Ry-F;-0,2=0; 50+10-20-20-2=0-

2. Determination of shear forces Qy and bending moments My

0<z <Im Qy(z) =—-F; =-20kN; M,(z) =-F;z;;
M =0; M =—-20kNm;

X|2,=0 Xz =1m

Qi =—20+50=30kN;  Q,, 5, =-20+50—20-2=—10KN;
z, —1)?
M, (22) = —F5z, + Ra(2; _1)_(12(22);

22

M =-20-1=-20kNm; M =—20-3+50~2—203=0;

X|z,=1m X|z,=3Mm

Mx’(ZZ) =Q,(z)=-F; +R, —0,(z,” -1) =0;
2, =(-F;+Ry+0,-1)/q, =2.5x;
M 25, =—20-2.5+50-1.5 201;>2 = 2.5kNm;
0<z;<Im  Q,(z3)=—Rg =-10kN; M,(z;) =Ry -2;
M =0; M =10kNm

X|2;=0 X|z3=1lm

3. Selection of sections based on strength conditions

O rmax :MS[G]; Wx ZM; [U]=i=@=200 MPa ;
Wy [o] n, 15
3 6
o 2 2000100 eme,
200-10

We accept I Nel6: |, =873 cm*, W =109 cm®, A=20.2 cm?,

S, =623cm®, h=16 cm, d=5mm, t=7.8mm, b=81 mm .
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Continuation of appendix 1

id
i by
* — =2, WX:Z—:loocmS,
s b 6
h=3/12-100=10.6cm, b=5.3cm.
¥
X 2
hl E:E, WX=2h h =100cm’,
- b 2 6
h=3/3-100=6.7cm, b=13.4cm.
Y od
3
X w, =™ < 0.1d% =100 im?,
32
=%/10-100 =10 fim.
¥ 3
d D w =% D (1-a*) ~0.1D*1-*) =100 em’,
10-100
(1 0.8%)

d=¢o-D=0.8-12=9.6 cm.

¥

t y ¥y d d 0
b | & &
b

b

A, 202 56 90 78 40
cm?

Ail 1 2.8 4.5 3.9 2
A
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4. Stress in the I-beam

Continuation of appendix 1

3
O max =%:180‘|Pa ;
109-107° -10
t o, MPa T, MPa 715 = 0;
-1 180
% % 2 33
2 % — 30-10°-81-10°-7.8-10%.7,51-10
aff fo4= 3 8 106
i . "} 43 81.107°.873.10"-10
3 =21Pa ;
- % %3 3 3 3 2
W.ﬁ b 150 ‘ z_2’4’:30'10 -81.107-7.8-10-7.51-10" _
' 5.107°.873.1078.10°
=33 IPa :
3 —6
. 30-10°-62.3-10 _ 43MPa

" 5.10°.873-10°°.10°

5. Determination of the safety factor n° of a complex section

An extract from the assortment for channel Ne10 gives:

02 02 o2l Y o 1,=174fm?, 1, =2047m*, A=10.97im?,
71 [ ~ -
Z x b=46mm, z,=1447m, h=10fm.
: % Then for a complex section we have:
b
A |
2
— I1=10cm — Xe =0; Ye :10 6.44 3(2 8 7'44) =5.14 fim>
10.9+10%-2-2-8
% i o, MPa
\'\\" ! Vil //
i\ /\f xp=ixy
LY ~ ) Z;:'}Id'j:z?f %2
- IR T \\ -
% ~ E o N Y=t =514
xO:IE =

i71
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Continuation of appendix 1

3

4
I, =(20.4+5.14% .10.9) + (1102+1.32 .10%) —2(21;3 +2.3%.16) =971Am*;
Y 5. =83fim; o —20'103'8'3'10_2—171 MPa
AT UM 971108108 ’
.10%-.6.3-1072 . 00
yala =63cm = O-ﬁ.é. = 20 10 683 106 :129 IPé. ' nTO = GT = 37 :1,75,
971-10°.10 Omax 171

6. Calculation of the permissible external force for a beam of complex cross-

section (see clause 5)

The material is cast iron K4 30 — 6,

ot =1901Pa, o7 =2101Pa ny=15 ~ a=12m,b=28m,c=1m.
Determination of reaction

b
e, B By - >M, =0, Mg+agb(a+=)+Rg(a+b)—
Mo—aqa(_T g $ o=1Tgu A 0 2 B

,ﬁaﬂ i L Fo(@a+b+c)=0;
Zp Za Za

@ 17 [+
3 by
P64y b
o 6] Fola-+b-+0)-gb(a+ ) ~Mq
I.fégf'Hl "= )| &1 Rg = a+h =

3ga(a+b+c)—gba+ 9) - 2qa’

A _ 2 _ 1960
224 LLLJ_HJ, g - a+b =L

R T

2
2Mg =0, Mg —RA(a+b)—qb7—Foc=0;

Check: YF,=0: Rp+Rg-gb-F=q(-116+28+196-3-12)=0.

Determination of Qy and M

1) 0<z<a 2) 0<z,<c
Qy =Ra =-1.16¢; Qy =Fy, =3.6q;
7, =0; —2.28q z2,=0; 0
My =Rpz; — Mg = =— = ’
X AT {zlza; —-4.27q Mx ==Foz, {22 =c; —3.6q
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Continuation of appendix 1

3) 0<zz<b

23 =0 (3.6-1.96)q =1.64q - FO-RB
Z3=b 1.64q9-2.8q=-1.16q g

23 =0; —3.6q

M, " (z") =-5.04q.
23=h; —4.27q (@) a

2
MX =—F0(23 +C)+R823 +qZ;={

For a complex section (see point 5), the upper fibers work in tension, and the lower
ones in compression. From the strength condition, taking into account that Mymax=
-5.04q,

o35l <[]

-j— ~
oial<[o], where [o]" =0 =1lgg _12671Pa,  [o] =

o5 210
n 1 Ny

S =1401P2;
1.5

M “VYas + 106 . 10-8
a)\aa,a,\ _ M el Yaa (o] = q* <101 1x _1267:10"-971 ﬁo — 3874.6 N/m;
I'x 5.04-y55 5.04-6.3-10"
0)
M “Yia “ 1108.971.10°8
‘Ui.é.‘ZMS[U]_:>q_S o] -1x _140-107-971 1(2) —32496 N /m;
I'x 5.04-y;5  5.04-83-10"

we take a smaller value: [g]=3249.6 N/m ~ 3.25 kKN/m, then

F, =30a=11.70kN;
M, = 2ga® =9.36 kN - m.

It should be noted that this cross-section is located rationally, because in the
upper fibers working for stretching, the absolute values of stresses are smaller than

in the lower ones, while [c]'<[c]".

7. Determine the displacement of beam #4 at the point of application of force F.

To do this, we will apply force F =1 at this point and build a plot M 1.
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Continuation of appendix 1

Reactions of supports:

r 4= 4
Ra =—F=—;
A3 3
' 1— 1
Ry =—=F=-=
B3 3
Foi Jgf Ry
B
T
IM’ETA 2 T
|
|
H |
! QL L=
[ 2 Jas 12 15
) 12 5ok T KF
jl'{rx _V =
20 wH

The plot M1 is built according to the same rules as My. Let's draw the plot My
again, taking into account the value in the center of the second section of the

My (z,=2) = 0.

We determine displacement by graphical calculation of Mohr's integral:

VZL[MX Xml]:i[l.2.1.20+3(1.20+}.0+4.g.o)_1.2.}.10]:& .
Ely Ely 6 6 3 3 6 3 Ely

For a steel beam of I-beam section (Ix = 873 cm?)

_122.10°
2-10".873.10°°
The task of determining the angle of rotation of any section is solved

=6,99-10°m -

similarly by applying a unit moment A =1.
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Appendix 2 - Assortment of standard profiles
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Continuation of appendix 2
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Figure 5.2 - I-beam Figure 5.3 - Channel
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