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Introduction 

The current stage of scientific and technological development requires the 

improvement of strength calculation methods in order to introduce new 

technologies, increase the reliability and durability of machines, as the 

competitiveness of engineering products on the world market is impossible without 

a sharp improvement in quality machines. 

The textbook is one of a series of educational and methodological literature 

prepared at the Department of Resistance of Materials of NTU «KhPI» in order to 

fill the gap created in recent years in the publication of educational literature, in 

particular, the course «Resistance of materials and calculations for strength in 

mechanical engineering». 

The manual covers one of the important sections of the general course of 

resistance of materials, namely, calculations of bending, and is intended for 

students to master the general provisions of the theory of flat direct bending of 

beams, acquaintance with the examples. 

The first section of the manual considers the bending of rectilinear rods, the 

definition of internal force factors in direct transverse bending. The second section 

considers the definition of normal stresses in pure bending, tangential stresses in 

transverse bending of beams, calculations for strength taking into account normal 

and tangential stresses. 

The third section considers the definition of displacements in direct bending 

using the differential equation of the elastic line and the Mohr integral. The fourth 

section presents the concept of geometric characteristics of the cross-sections of 

the rods. The fifth section provides calculation schemes and numerical data for 

individual calculation and design tasks, as well as examples of their solution and 

design. 
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1. BENDING OF STRAIGHT BEAMS 

 

 1.1. Classification of bending and types of supports 
 

Bending is a type of rod deformation in which bending moments occur in its 

cross sections.  

Classification of bending. Bending is divided into transverse - when the 

external load acts in the direction perpendicular to the axis of the rod, longitudinal 

- when external forces act along the axis of the rod and longitudinal - transverse. 

Transverse bending is divided into flat, in which the bending forces lie in 

one plane, and spatial, in which the external bending forces are arbitrarily oriented 

in space. 

Flat bending is divided into straight and oblique. In the case of direct 

bending, the plane of action of bending loads coincides with one of the main axes 

of inertia of the section. 

Figure 1.1 shows the case of loading the rod during direct transverse 

bending. External forces are located in the plane YOZ, which coincides with the 

main axis of section Y. In oblique bending, the plane of action of bending loads 

does not coincide with any of the main axes of inertia. 

 

 

Figure 1.1 - Direct transverse bending  
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A special case of transverse bending  ( yQ   0 and  xM  0) is pure bending, 

in which the shear  force yQ  is zero, and the bending moment xM  is the only 

internal force factor in the cross section of the rod and is constant in the rod. 

Consider the bending of beams. A beam is a rod that is attached to the 

supports and works on bending. 

The number of external connections in the supports prohibits the movement 

of the beam as a solid whole. Flat supports of beams and reactive forces in them 

are shown in Fig.1.2. 

 

 

 

Figure 1.2 - Flat supports of beams 

 

In the hinged support (Fig. 1.2, a) there is one reactive force R acting 

perpendicular to the support surface (in the direction of the shown connection). In 

the articulated-fixed support (Fig. 1.2, b) there are two components of the reaction: 

vertical R and horizontal H. In the clamp (rigid clamp) (Fig. 1.2, c), there are three 

components: vertical R, horizontal H and moment M. 

For the kinematic immutability of flat beams, the required number of 

external connections is three, and in the case of flat bending, the horizontal 

component H of the reaction in the hinged-fixed support is identically equal to 

zero. Therefore, we further use two equilibrium equations. If the number of 

external transverse connections is more than two, then such a beam is called 

statically indeterminate (multi-support). Types and names of beams that are found 

are shown in Fig. 1.3. 

a) b) c) 
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Figure 1.3 - Types and names of beams 

 

1.2. Shear force yQ  and bending moment xM as internal force   factors 

during bending 
 

Let's analyze the internal force factors in the cross section of the beam in 

direct transverse bending, and then formulate the basic rules for plotting diagrams 

yQ  and xM .   

Consider a cantilever rod with a clamped right end and loaded with forces 

F1 and F2 (Fig. 1.4). Let F1> F2. 

 

 

Figure 1.4 - Cantilever rod 

Single span beam Single cantilever beam 

 

Double cantilever beam 

 

Cantilever beam 

 

Multy-span beam 
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Let's use the method of sections. We will choose a section on the first and 

second sites, we will show the cut off parts, we will replace action of the rejected 

parts on the left by internal force factors  yQ  and xM . From the conditions of 

statics (the sum of projections of forces on the Y axis and the sum of moments 

relative to the X axis passing through the center of gravity of the considered 

section) we determine their values. 

1 segment: Fi = - F1 + yQ (z1) = 0,       from where    yQ (z1) = F1; 

               Mi = F1z1 – xM (z1) = 0,   from where      xM (z1) = F1z1. 

2 segment,  Fi = - F1 + F2 + yQ (z2) = 0, from where    yQ  (z2) = F1 – F2; 

     Mi = F1z2 - F2(z2 ) - xM (z2-a) = 0, from where    xM (z2)= F1z2 – F2(z2-a).   

Using the following notation, we formulate the following rules for determining 

the transverse force and bending moment during bending. 

Shearing Forces in the section – yQ (z)  is numerically equal to the 

algebraic sum of projections on the normal (Y axis) to the axis of the rod of all 

forces located on one side of the section (all one-sided forces), and forms a 

substitution of the action of the rejected part on the left. 

Rule of signs. Shearing force is considered positive (positive) if it rotates 

the cut-off part of the beam relative to the center of gravity of the cross-section 

clockwise, and negative (negative) if it rotates counterclockwise. 

Bending moments in the section – xM (z)  is numerically equal to the 

algebraic sum of moments relative to the center of gravity of the cross section of 

all forces located on one side of the cross section (all one-sided forces), and forms 

a replacement for the action of the rejected part on the left. 

Rule of signs. The bending moment is considered positive (positive) if 

the cut part bends convexly downwards (compressed fiber at the top, 

stretched at the bottom), and negative (negative) - if vice versa. Thus, the plot 

of bending moments is built from the compressed fiber. 

Schematically accepted rules of signs look like this: 
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Figure 1.5 - Rules of signs 

 

1.3. Differential dependences of bending 

 Consider a beam loaded with an arbitrary distributed load q(z) (Fig. 1.6, a) 

In the cross section at a distance z  we select an element of length dz (Fig. 1.6, a). 

In section I there are internal force factors yQ  and xM , in section II at a 

distance dz  from the first internal forces yQ +d yQ  and xM +d xM act. 

Within infinitesimal dz, the load q(z) can be considered uniformly 

distributed and equal to q. 

 

 

 

Figure 1.6 – Beam and its element dz 

 

Since the beam under the action of external load is in equilibrium, then each 

of its elements under the action of external and internal forces is also in equilibrium 

(Fig. 1.6, b). 

a) b) 
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Let's write down the conditions of statics: 

1. ;0 =yF  0=+−− qdzdQQQ yyy , from where   0=− ydQqdz , so   

                                                     
dz

dQ
q

Y
=                                                    (1.1) 

2.  = 0AM  ; 0)(
2

=+++−+− xxyyx dMMdzdQQ
dz

dzqM , giving 

similar terms and despising infinitesimal second-order in comparison with 

infinitesimal first-order, we obtain: 0=+− xy dMdzQ , from where :          

                                                    
dz

dM
Q x

y = .                                               (1.2) 

3. Substituting expression (1.2) into the dependence (1.1), we obtain: 

                                                   
2

2

dz

Md

dz

dQ
q xy

== .                                          (1.3) 

Differential dependences (1.2) and (1.3) allow us to establish some features of the 

distributions of shearing forces and bending moments.  

The following rules can be used to build and test diagrams xM  and yQ  . 

1. On segments where the distributed load is absent (q=0), the diagram 

yQ is constant, and the diagram xM represents a linear function. 

2. On segments with evenly distributed load q , the diagram yQ is linear, 

and the diagram xM is a square parabola, and the convexity of the parabola is 

directed in the opposite direction of the distributed load. At the point = zz

where the transverse force 0)( =zQy  (changes the sign), the moment xM

reaches an extreme value ( minmax , xx MM ). 

3. In areas where 0=yQ  the plot xM  is permanent. 

4. The following points are formulated for the right z axis (for the right 

coordinate system). In the area where the shearing force yQ is positive, the 

moment diagram xM increases and decreases - if yQ negative. 
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5. In sections where external concentrated forces are applied to the 

beam: 

a) on the plot yQ there are jumps in their magnitude and in the direction of 

the applied concentrated forces; 

b) fractures appear on the plot xM , and the edges of the fractures are directed 

against the action of concentrated forces. 

6. In sections where concentrated moments are applied to the beam, 

jumps on the magnitudes of these moments are observed on the xM plot. 

7. The diagram yQ is a diagram of the first derivative of the moment xM

function, ie the ordinates yQ  are proportional to the tangent of the angle of 

inclination tangent to the diagram xM . 

Next we will consider examples of construction of diagrams of shearing 

forces yQ  and bending moments xM . 

 

Example 1. 

We show the current section with the coordinate z  (Fig. 1.7), the limits of its 

change, write the functions yQ  and xM . When taking into account the evenly 

distributed load q, we use the following method: replace it with the concentrated 

force zq   applied in the middle of the section (shoulder of concentrated force 

0,5∙z). 

 

 z0   zqzQy =)( ;
2

)(
2z

qzM x −=  . Next, calculate the value yQ  

and xM :  
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Figure 1.7 - Cantilever beam with evenly distributed load q 

 

 00 == yQz  ; 0=xM ;   == qQz y ; 
2

q
M

2

x


−= . 

According to the diagram, using the rules of verification, determine the reference 

reactions AR  and AM . The reaction = qRA  is equal to the magnitude of the 

jump on the plot yQ  in this section and is directed upwards because yQ  is 

positive. If you build a diagram yQ , going to the left, the reaction AR  should 

give a positive value yQ , ie should be directed upwards. From the conditions of 

statics   =−= 0qRF Ayi  we obtain the same value = qRA . 

On the plot xM  in the jamming of the momentum jumps by magnitude 
2

2q
, 

therefore 
2

2
=

q
M A . Due to the fact that xM in the clamp is negative, AM  

must be directed counterclockwise. From the condition of statics 

 =+−= 0
2

AAi MqM


  we obtain:. 
2

2
=

q
M A . 
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Example 2. 

 

 

Figure 1.8 - Single span beam with evenly distributed load q 

 

1. Let's define basic reactions. 

        = 0AM , 0
2
=−


 qRB , from where: 

2


=

q
RB . 

         = 0BM , 0
2
=+−


 qRA , from where 

2


=

q
RA . 

         Verification:   0yiF , 0
22

−


+


−+ 


 q
qq

qRR BA . 

 

The scheme of the problem is symmetric, so both reactions are equal to half 

the external load. 

2. We show the current section with the coordinate, the boundaries of its 

change and write down the functions yQ  and xM : 

  

 z0    

2
)(


−=−=

q
zqRzqzQ By  ; zq

z
qzR

z
qzM Bx +−=+−=

222
)(

22 
.  

Next, calculate the value yQ  and xM : 
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0,
2

0 =−== xy M
q

Qz


 , 0,
2

=+== xy M
q

Qz


  . 

Note that at the point where 0
2
=−=  q

qzQy , the bending moment xM  must be 

of extreme magnitude. So, 
2


=z  and 

84822

2222

max

 qqq
z

qqz
M x =+−=+−= 



. 

 

 

 

Example 3. 

 

Figure 1.9 - Singlr span beam with two forces 

 

1. Due to the symmetry of the problem .FRR BA ==  

2. Write down the functions and determine the characteristic values yQ , xM  

for the plots. 

 

1st section: az  10      ;)(;)( 111 zRzMFRzQ AxAy ===                             
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                                                   FaMazMz xx ==== 11 ;00 . 

2nd section: )(2 aza −     0)( 2 =−=−= FFFRzQ Ay          

.)()( 22222 FaFaFzFzazFzRzM Ax =+−=−−= . 

The shearing force on the section is zero, so =xM const, the section undergoes 

pure bending. 

3rd section: az  30      FRzQ By −=−=)( 3 ;  ;)( 33 zRzM Bx =  

  .;00 33 FaMazMz xx ====  

 

Example 4. 

 

 

Figure 1.10 - Double cantilever beam 

 

1. Reactions of supports. 

 = ;0AM   ;04524 =+−− BRFqM   ,04522422 =+−− BR  

 6=BR kN. 

 = ;0BM   ;04124 =−−+ ARFqM    ;0422422 =−−+ AR      

 4=AR  kN. 

         Verification:  −−+=−−+= .0242464 FqRRF BAy  
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3. Divide the beam into sections, show the sections on each of them, indicate the 

boundaries of change for iz , determine and calculate the functions yQ  and  xM

. 

1st section: 10 1  z    ;0)( 1 =zQy   2)( 1 −=zM x kNm. 

2nd section: 51 2  z    );1(24)1()( 222 −−=−−= zzqRzQ Ay  

;
2

)1(
2)1(42

2

)1(
)1()1()(

2
2

2
2

222

−
−−+−=

−
−−−+−=

z
z

z
zqzRMzM Ax  

412 == yQz  kN;  2−=xM  kNm.  452 −== yQz  kN;  2−=xM  kNm.  

 

The shearing force yQ  changes the sign, the bending moment xM  reaches the 

extreme - the maximum value at z , which is determined by the condition 

 

,0)1(24)( =−−=  zzQy  from where 3=z m, and  

2482max =−+−=xM  kNm. 

3rd section: 10 3  z     ;)(;2)( 333 FzzMкНFzQ xy −===  

 003 == xMz ;  213 −== xMz  kNm. 

 

 

 

2. STRESS IN TRANSVERSE BENDING 

 

In the case of direct transverse bending, a shearing force yQ occurs in the 

cross section, which causes shear deformation, and a bending moment , which 

causes bending deformation. 

 

2.1. Normal stresses at pure bending 

Consider the case of pure bending, when in the section there is only a 

bending moment. 

xM
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We show the rod before deformation (Fig. 2.1, a) and after (Fig. 2.1, b) load 

bending moments xM . 

 

 

Figure 2.1 - Rod before deformation and after 

 

Observing the deformation of the orthogonal grid, previously applied to the 

side surface of the beam before loading (Fig.2.1, a) and after (Fig. 2.1, b), we note 

that the longitudinal lines in pure bending are curved along the arc of the circle, 

the contours of cross sections remain flat, traces of which intersect longitudinal 

lines at right angles. In the compressed area (in this case at the bottom) the fibers 

shorten, in the stretching zone (at the top) lengthen. 

There is a longitudinal layer, the length of which remains unchanged during 

pure bending. This layer is called neutral. The tensile zone and the compression 

zone in the beam are separated by a neutral layer with a radius of curvature  .  

These circumstances allow us to introduce the following hypotheses. At pure 

bending the hypothesis of flat sections is observed. All cross-sections of the rod 

are not distorted during pure bending, but only rotate relative to each other around 

the X-axis. Longitudinal fibers do not press on each other. Normal stresses do not 

change along the width of the section. 

compressed area  

ρ - neutral layer with a radius of curvature 

neutral layer 

stretching zone 

a) 

b) 
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It is logical to assume that at the points of cross section during pure bending 

there are only normal stresses that lead to an integral internal force factor - bending 

moment xM . 

Due to the lack of shearing forces in the direction of the Y axis, it is obvious 

that the tangential stresses are absent at the points of intersection. 

Consider a rectilinear rod of arbitrary cross section with the axis of 

symmetry Y with pure bending (Fig.2.2, a). In the section with the coordinate z we 

apply the method of sections and get:  (Fig.2.2, b). 

In this section, the moment xM arises as the sum of the moments from the 

distributed internal forces (normal stresses  ). Let's select an elementary area dA  

with coordinates yx,  (Fig. 2.2, c). Let the Y axis be the main axis and the X axis 

coincide with the neutral longitudinal layer. 

The problem of determining the internal force factors belongs to the class of 

statically indeterminate problems, so then we apply the scheme of solving statically 

indeterminate problems. 

 

 

 

Figure 2.2 - Rectilinear rod of arbitrary cross section 

MM x =

a) 

b) 

c) 
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Static side of the problem. Of the six equations of static equilibrium, three 

equations     0,0,0 iziyix MFF  are performed identically. The 

elementary force in the axial direction acting on the area dA: ,dAdN =  and the 

resulting force =
A

.dAN  The elementary moment of force dN  relative to the X 

and Y axes will be written as  ==
A A

x ydAdNyM  and  .xdNdM y =  

Respectively bending moments:  ==
A A

x ydAdNyM ;  ==
A A

y xdAdNxM . 

Thus, the static conditions will take the form: 

                               = 0izF ;   =
A

dA 0 ;                                               (2.1) 

                                         = 0iyM ; 0=
A

xdA ;                                            (2.2) 

                                        = 0ixM ; 0=− 
A

x ydAM .                                    (2.3) 

Note the unknown: normal stress  - the magnitude and law of distribution; 

- radius of curvature of the neutral layer; position of neutral layer. 

Geometric side of the problem. Consider the deformation of an element of length 

dz . Let the fiber 1OO  coincide with the neutral layer, select the fiber ab  at a 

distance y from it (Fig. 2.3).  

 

 

Figure 2.3 - Deformation of different fibers 
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The original length of the fiber is === dOOab 10 , because the fiber 

1OO  is not deformed. In the process of deformation, the length of the fiber 11ba  

will be the length of the arc: +=== dydba )(1111 . Determine the relative 

deformation of the fiber ab  


=


−+
=

−
=


=

y

d

ddy)(

0

0

0 





ab
ab . Since the 

longitudinal fibers do not press on each other, then, apparently, this dependence 

occurs for any fiber: 

                                        


=
y

.                                                              (2.4)  

This is an additional condition - the joint deformation equation in pure 

bending. 

The physical side of the problem. In pure bending, the longitudinal fibers are 

subject to stretching and compression, so Hooke's law is valid for uniaxial stress 

= E . 

After substituting the value of  from expression (2.4) we have  

 

                                      


=
y

E .                                                          (2.5) 

Substituting (2.5) sequentially into equations (2.1), (2.2), (2.3), we obtain the 

following. 

1.    =


=


=


=
A A

x

A

S
E

ydA
E

dA
y

EdA 0 The modulus of longitudinal elasticity 

E  for the material is a nonzero constant; the radius of curvature  of the neutral 

layer is a finite value. Thus, the static moment of the area  0=xS . Therefore, the 

neutral layer at pure bending coincides with the central axis of the section, ie the y 

coordinate is calculated from the neutral line of the section - the geometric location 

of points at which the normal bending stresses are zero. 
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2.    =


=


=


=
A A

xy

A

I
E

xydA
E

xdA
y

ExdA 0 If the centrifugal moment of inertia 

xyI  about the central axes is zero, then these axes are the main axes of inertia. Thus, 

the XY axes are the main axes of inertia and the neutral line is the main central axis 

of inertia, it is perpendicular to the plane of action of the load. 

 

3.   =


−=


−=


−=−
A A

xxx

A

xx I
E

MdAy
E

MydA
y

EMydAM 02  whence the 

curvature of the neutral longitudinal layer is determined by the expression:  

x

x

EI

M
=



1
,                                                         (2.6) 

which is called the Navier equation. Here  =
A

xIdAy2
 is the axial moment of 

inertia of the section, and EIx is the stiffness of the rod during bending. 

Comparing the values of curvature 


1
 from equations (2.5) and (2.6) we 

obtain: 

 

                                            
x

x

x

x EI

M

Ey

EI

M

Ey
=




























=



=



1

1

. 

The formula for determining normal stresses takes the form: 

                                            
x

x

I

yM
= .                                                              (2.7) 

From the obtained formula it follows that the normal stresses along the height of 

the section change linearly, because the bending moment xM  and the moment of 

inertia  Ix of the cross section are constant. Figure 2.4 shows the distributions of 

normal stresses in height for different cross-sectional shapes. 
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 Maximum stresses max  occur at the farthest points from the neutral line 

at maxyy =  , that is 

 

 

Figure 2.4 - Distributions of normal stresses in height for different cross-sectional 

shapes 

 

x

x

I

yM max
max


= , which must be compared with the allowable stress   .  

Thus, the bending strength condition takes the form 

      

                          


=
x

x

I

yM maxmax
max .                                           (2.8) 

 

In practice, this form is used to calculate sections with one axis of symmetry (Fig. 

2.4, b). Given the fact that 
maxy

I
W x

x =  - the axial moment of resistance, it is more 

convenient for sections with two axes of symmetry (Fig. 2.4, a) to use the condition 

of bending strength in the form: 

n.l

. 

n.l. 

n.l. 

X 

a) 

b) 
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                                      =
x

x

W

M max
max .                                                    (2.9) 

 

In the case of transverse bending, when the shearing force yQ  is not equal to zero, 

there is a curvature of the cross sections, and the hypothesis of flat sections is not 

true. Studies show that with respect to the length   of the rod to the height h of the 

cross section 8
h


 (for most beams) we can assume that the cross section is 

practically not curved, then formula (2.7) for determining normal stresses is valid 

for transverse bending. 

 

Example. Determine the dimensions of different shapes of cross sections, if the 

bending moment in the cross section 80=xM  kNm, the allowable bending stress 

  160= MPa. 

From the condition of strength  =
x

x

W

M max
max  section modulus of section 

 
33

6

3
max 105,0

10160

1080
м

M
W x

x
−=




=


  = 500 сm3.  

Next, design a section (Fig. 2.5). 

 

1. Rectangular section (Fig. 2.5, a), for which the ratio 
b

h  should be set (take 

2=
b

h ). section modulus 500
3

2

6

3
2

=== b
bh

Wx cm3, from where 

97503 =b  cm. Height of section 18=h cm, cross-sectional area 

1622 2 === bbhA cm2. 
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2. Rectangular section for which the ratio 
2

1
=

b

h
 (Fig. 2.5, b). By analogy: the 

section modulus 500
246

32

===
bbh

Wx  cm3, from where 8,22120003 ==b  cm, 

4,11=h  cm, 2604,118,22 ==A  cm2. 

 

 

Figure 2.5 - Different shapes of cross sections 

 

3. Circle section with a diameter of d (Fig. 2.5, c). Axial section modulus 

5001,0
32

3
3

=


= d
d

Wx  cm3, whence the diameter of the section 

1,1750003 ==d  cm, area 229
4

1,17

4

22

=


=


=
d

A  cm2. 

4.  Circular hollow section (Fig. 2.5, d). Set by the ratio of diameters
D

d
= , 

section modulus 500)1(1,0)1(
32

434
3

=−−


= D
D

Wx  cm3.  Let 8,0=  , 

a) 
h=18cm 
b=9cm 

b) 
h=11,4cm 
b=22,8cm 

c) 
d=17,1cm 

d) 
D=20,4cm 
d=16,32cm 

e)  

I   №30а 

f) 

]    
№33 

 

 

162cm2 260cm2 229cm2 115cm2 50cm2 47cm2 Ai 

3,24 5,2 4,58 2,3 ≈1 ≈1 Aopt/Ai 

 



 24 

then 4,20
8,01

5000
3

4
=

−
=D  cm, 32,168,04,20 ==d  cm, area 

115)8,01(
4

4,20
)1(

4

2
2

2
2

=−


=−


=
D

A  cm2. 

5. I-beam section (Fig. 2.5, e). Select the I-beam number with the nearest larger 

value of the section modulus to the calculated value. For the I-beam № 30а: 

518=xW  cm3, 50A сm2. 

6. Channel section (Fig. 2.5, f). Select the channel section beam number with the 

nearest larger value of the section modulus to the calculated value. For the 

channel section beam № 33 484=xW сm3, 47A сm2.  

 Taking the ratio of individual areas to the area of the rational cross section 

(I-beam, channel), we obtain the coefficient of material consumption. Let's make 

the table (Fig. 2.5) from which it follows that the most rational are I-beam and 

channel sections in which the smallest area of cross section and the smallest 

expense of material.  

 

2.2. Tangential stresses at transverse bending 

 The shear force in the cross section causes tangential stresses , which 

coincide in the direction with it, do not change along the width of the cross section 

and are determined by the formula of D. Zhuravsky: 

                                   
xy

cut
xy

Ib

SQ


= ,                                                      (2.10) 

where yQ  is the shearing force acting in the cross section; xI - axial moment 

of inertia (second area moment) of the section relative to the Central axis X (neutral 

line); yb - section width at the level y from the neutral line where the tangential 

stresses are determined; c
cutcut

x yS A = - the absolute value of the static moment 

relative to the central axis X of the part of the section that lies above or below the 
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level where the tangential stresses are determined. The strength condition of 

tangential stress in transverse bending is written in the form: 

                                            ][maxmax
max  


=

xy

cut
xy

Ib

SQ
 .                               (2.11) 

Thus, with direct transverse bending we have the conditions of strength for normal 

  and tangential   stresses. The main condition is the strength of normal stresses, 

and condition (2.11) of tangential stresses, as a rule, is checked. The use of D. 

Zhuravsky's formula will be analyzed by examples. 

 

2.3. Distribution of tangential stresses for a rectangular section 

In the cross section there are Mx moment and shear force yQ , directed as shown 

in Fig.2.6. Shear force yQ , section width bby =   and axial moment of inertia 

12

3bh
I x =  are specific constants (Fig. 2.6). Thus, the tangential stresses vary 

according to the same law as the static moment of the cut-off part of the area 

S
cut
x

. 

 

 

Figure 2.6 – Tangential and normal stresses for rectangular section 

 

𝐴𝑐𝑢𝑡 

Ccut 
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Determine the tangential stresses at level y. The area of the cut part of the section 









−=








−=

h

ybh
y

h
bAcut 2

1
22

, position of its center of gravity 









+=








+=

−

−=
h

yhyh
y

h

h
yc

2
1

4242

2

2
. Static moment of the cut off part of the 

area: .
2

1
8

2
1

4

2
1

2

22






















−=








+








−==

h

ybh

h

yh

h

ybh
yAS c

cutcut
õ  

Thus, the tangential stresses vary according to the law of the quadratic parabola. 

The maximum tangential stresses occur on the neutral line, where the normal 

stresses   are zero. To determine max   it is necessary to calculate the static 

moment of half the cross-sectional area S
cut
x max , and the maximum tangential 

stresses will be defined as: 

xy

cut
xó

Ib

SQ


= max

max . 

For a rectangular cross section bby = , 
8

,
12

2

max

3 bh
S

bh
I cut

xx == we have: 

A

Q

bh

Q

bhb

bhQ yyy

2

3

2

3

12

8

3

2

max ==


= . 

 

2.4. Distribution of tangential stresses for I-beam section 

In the cross section there are Mx moment and shear force  yQ , directed as shown 

in Fig. 2.7. 

Using expression (2.10) for tangential stresses, we determine their values at 

characteristic points. 

Point 1:  01 =  because 0=cut
xS  (above level 1 the truncated area is missing). 
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Points 2,3. These points have the same y coordinate, but belong to the shelf and 

the wall at the same time, ie different widths b2=b; b3=d . Therefore, in the place 

of transition of the shelf into the wall there is a jump of tangential stresses. 

 

  

Figure 2.7 - Tangential and normal stresses for I-beam section 

 

Point 2 (belonging to the shelf): 






 −
=







 −


=

22
2

th

I

tQth
bt

Ib

Q

x

y

x

y
; 

Point 3 (belonging to the wall): 






 −


=

2
3

th
bt

Id

Q

x

y
. 

Point 4: 
x

cut
xy

x

y

Id

SQt
h

t
h

d
th

bt
bI

Q


=




































−









−+







 −
=

max
4

2

2

22
  . 

S
cut
x max  - static moment relative to the central axis of half the cross-sectional area, 

for standard profiles are given in the assortment tables. An exemplary graph of 

tangential stress distribution is shown in Figure 2.7. The actual distribution of 

tangential stresses is slightly different from that obtained, because the shelves have 

slopes, and the transition from the shelf to the wall is carried out along the radius 

of curvature. 
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     2.5. Performing design calculation  

1. From the condition of strength by normal stresses we determine the section 

modulus of the cross section, ie 
][

max


 x

x

M
W , and design the cross section. 

2. Check the cross section for tangential stresses. If ][max   so, the calculation 

is complete. If ][max   (exceeding by more than 5%), the cross-sectional 

dimensions are determined from the condition of tangential stress. There is no need 

to check the cross section for normal stresses, because its dimensions will be larger. 

Example 1. For this scheme of loading the beam (Fig. 2.8) to determine the 

dimensions of the I-beam cross section, if the allowable normal stress 150][ =  

MPa, tangent - 100][ =  MPa.  

Determine the reactions: 

 ==−++= 45,0)( BBA RRaFFaM  kN;  

 ==−++= 45,0)( AAB RRFaaFM  kN. 

Check:  −++−= 0
BAy

RRFFF . 

1. Divide the beam into three segments, write for the current section on each section 

of the expression (function) yQ and xM : 

az  10  30=−= FQy  kN; 1zFM x −= ; 

 20 z  15+=+−= Ay RFQ  kN; 22 )( zRazFM Ax ++−= ; 

az  30  30−=−= FQy  kN; 3zFM x −= . 

We calculate yQ , xM  in characteristic sections and build plots. 
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Figure 2.8 – Plots Qy and Mx   

 

2. From the condition of strength at normal stresses (where maxxM ), a dangerous 

cross section is on the supports; from the condition of tangential stress (where 

maxyQ ) any section on the consoles is equally dangerous. So, maxxM = 24 kNm; 

maxyQ = 30 kN. 

3. From the condition of strength by normal stresses we determine the section 

modulus: 3

6

3
max 1016,0

10150

1024

][

−=



=


 x

x

M
W  m3  = 160   сm 3. 

We choose an I-beam №18a cm3, which is slightly less than the calculated value. 

Other parameters necessary for calculation: 4,25=А сm2 , 1430=xI сm4 = 

143010-8 m4;  1,5=d  mm = 5,110-3 m,  8,89відс
max =xS  m3= 89,810-6 m3 . 

Check the cross section for tangential stresses: 

6

83

63відс
max

max 109,36
101430101,5

108,891030
=




=


=

−−

−

x

xy

Id

SQ
 N/m2 = 36,9 MPa < [], 

the strength condition is met and the calculation is completed. 



 30 

Example 2. For this scheme of loading the wooden beam (Fig. 2.9) determine the 

dimensions of the rectangular section, if the ratio of the sides 2=
b

h
, the allowable 

normal stress 10][ = MPa, tangent 5,2][ =  MPa.  

 

 

Figure 2.9 - Double cantilever beam 

 

Since the load is symmetrical, the reference reactions are the same and equal to 

half the external load, thus 40== BA RR kN. 

1.  Determine the shear forces and bending moments in sections. 

1st segment:  . az  10  40−=−= FQy  kN; 1zFM x −= . 

2nd segment:  2z0  0=+−= Ay RFQ  ;  

440404040)( 2222 −=−=+−−=++−= azazzRazFM Ax  kNm.  

3rd segment: а 3z0   40== FQ y  kN; 3zFM x −= .  

On the received functions we construct plots  yQ  and xM . From the condition of 

tangential stress, any cross-section on the consoles is equally dangerous, and from 

the condition of normal stress, it is equally dangerous. any section on the span of 

the beam. 

2. From the condition of strength at normal stresses the section modulus : 

 3

6

3
max 104,0

1010

104

][

−=



=


 x

x

M
W m3  = 400 сm3;  400

3

2

6

3
2

=== b
bh

Wx сm3,  
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from where : 4,8400
2

3
3 ==b сm, 8,162 == bh сm, 

1424,822 22 ==== bbhA сm2  

3. The maximum tangential stress for a rectangular section is: 

6

4

3
max

max 1022,4
101422

10403

2

3
=




==

−A

Qy
N/m2 = 4,22 MPa  =2,5 MPa , 

the strength condition is not met. 

Determine the dimensions of the cross section from the condition of tangential 

stress:  =
A

Qy max

max
2

3
, from which we find the cross-sectional area:

3

6

3
max

1024
105,22

10403

][2

3
−=




=


=

yQ
A m2=240сm2  

Area 2402 2 === bbhA сm2, whence the width of the section: 11120 =b сm, 

and height 22=h сm. 

From the condition of tangential stress, the cross-sectional dimensions are larger 

than from the condition of normal stress.  

 

2.6. Potential energy of deformation during bending  

Pure bending ( 0,0 = xy MQ ). The potential energy of deformation during 

pure bending is determined by the work of internal bending moments on the 

angular displacement of the section. 

 

 

Figure 2.10 - Pure bending of beam 

a) b) c) 
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Consider the rod with pure bending (Fig. 2.10, a). Select the element of the rod 

length dz  (Fig. 2.10, b). Under static load, the neutral axis is curved along the 

radius ρ of the circle, the extreme sections are rotated by an angle d . Within the 

framework of Hooke's law, the dependence between the moment xM  and the angle 

of rotation d  under static load is linear (Fig. 2.10, c). The elementary work of 

internal forces is determined by the area of the triangle, ie = dMdW x
2

1
. 

But the work is numerically equal to the potential energy of deformation dU , ie. 

= dMdU
2

1
 . From Fig.2.10b it follows that


=

dz
d , thus, 


=

dz
MdU x

2

1
. The 

curvature of the neutral axis 
x

x

EI

M
=



1
, then 

x

x

EI

dzM
dU

2

2

= . The total potential 

energy of the rod is the integral of the length of the rod: 

                                           =
 x

x

EI

dzzM
U

2

)(
2

..                                                (2.12) 

Transverse bending ( 0,0  xy MQ ). As shown by calculations for rods in 

which the ratio of length   to section height h  is greater then )108(108 


h
, 

the potential energy of deformation from the shear force 
yQU  is %5,04,0   the 

potential energy of deformation of the bending moment
xMU . Therefore, when 

determining the potential energy of deformation during bending, only the potential 

energy of deformation from the bending moment xM , which is determined by 

expression (2.12), is taken into account (2.12). 

 

 

 

 

3. DISPLACEMENT IN STRAIGHT BENDING.  
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3.1. Differential equation of a curved axis  

We obtain the differential equation of the curved axis with straight bending 

(the plane of action of the loads coincides with one of the main axes of inertia). 

The rectilinear axis of the beam under the action of external loads (Fig. 3.1) is 

transformed into a flat smooth curve and is called an elastic line (curved axis of the 

beam). 

 

 

Figure 3.1 - Curved axis of the beam 

The deflection of the beam )(zV  is the movement of the center of gravity 

of the section along the normal to the original axis. The maximum deflection is 

called the deflection arrow and is denoted by f. The section rotation angle )(z  is 

the section rotation relative to the original position. 

The tangent of the angle of inclination tangent to the curved axis is the first 

derivative of the function )(zV : tg )(
)(

)( ' zV
dz

zdV
z == . For small angles (tg

)()( zz  ) the equation of rotation angles can be written as: )()( ' zVz = . 

The differential equation of the curved axis of the beam is obtained using 

the Navier equation, in which the curvature of the neutral axis during bending is 

defined as:  
x

x

EI

M
=



1
. On the other hand, from the course of analytical geometry 

Elastic line (curved axis of the beam) 
Tangent to the curved axis 
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it is known that the curvature of a flat curve is defined as: 

2

3

2'

''

})]([1{[

)(1

zV

zV

+

=


. 

Comparing the right-hand sides of these two dependences, we obtain a nonlinear 

differential equation with respect to deflection  )(zV : 

                                            

2

3

2'

''

})]([1{

)()(

zV

zV

EI

zM

x

x

+

=   .                            (3.1) 

For small displacements (within elastic deformations), when, for example,  

tg 01,0)()( ' = zVz , the square of the first derivative in comparison with the unit 

can be neglected. Taking into account that the signs of the second derivative  )('' zV

and the bending moment xM  coincide, we obtain a differential equation of the 

second order, which is called the differential equation of the curved axis of the 

beam for small displacements: 

                 

                                          )()('' zMzVEI xx = .                                             (3.1, а) 

Consecutively integrate twice and obtain the equation for angles of rotation 

and deflection: 

                               +== 1
' )()()( CdzzMzEIzVEI xxx ,                             (3.2) 

                               ++= 21)()( CzCdzzMdzzVEI xx ,                               (3.3) 

where  1C  and 2C  are arbitrary constant integrations determined from boundary 

conditions. 

Example 1. Consider a cantilever beam loaded on the free end with a 

concentrated force (Fig. 3.2).  

Bending moment in cross section  z : FzzM x −=)( . Write the differential 

equation of the elastic line of the beam: zFzVEI x −=)('' . Integrating this 

equation twice, we obtain in accordance with (3.2), (3.3): 
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Figure 3.2 - Cantilever beam 

 

1

2
'

2
)( C

zF
zVEI x +

−
= ; 

21

3

6
)( CzC

zF
zVEI x ++

−
= . 

We will write down and fulfill the boundary conditions. When =z  the angle of 

rotation 0)()( == V , ie, 0
2

1

2

=+


− C
F 

 where: 
2

2

1

F
C = . When =z  

deflection 0)( =V , ie: 0
26

2

23

=+


+


− C
FF




, from where: 

326

333

2

 FFF
C −=


−


= . 

Taking into account the values 1C and 2C equations of the elastic line and angles 

of rotation will be written as:  

326
)(

323  F
z

FFz
zVEI x −+−= ; 

22
)(

22 FFz
zEI x +−=  . 

The largest deflection and angle of rotation occur at the origin when 0=z : 

3
)0(

3F
VEI x −=  , from where: 

xEI

F
fVV

3
)0(

3

max


=== ;  

2
)0(

2F
EI x =  , from where: 

xEI

F

2
)0(

2

max


== . 
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The maximum deflections maxV  of the beams must be compared with the 

permissible deflection ][V . Then the condition of rigidity when bending the 

cantilever beam will take the form: 

                              ][
3

3

max V
EI

Fl
fV

x

== .                                             (3.4) 

From here the axial moment of inertia 
][3

3

VE

F
I x


  , on the basis of what we design 

a section is defined. The allowable deflection is selected depending on the 

responsibility of the structure from the range )
1000

1

100

1
(][ =V , where   is  the 

span of the beam. 

Direct integration of the differential equation of an elastic line is 

cumbersome even in simple cases. Therefore, to determine the displacements in 

the beams, energy methods are more accepted, which lead to simple 

dependences. 

 

3.2. Energy methods for determining displacements  

We introduce the notation and basic concepts. 

The bending moment from the external load xFxF MzM =)( is denoted 

as FM . Bending moment from a unit force (moment) -  xM  or M . 

Displacement (deflection, angle of rotation) from the external load is indicated 

ij  where the first index i is related to the point or direction of movement; the 

second index j is related to the reason that caused the movement. Linear 

displacement (deflection) from a unit force and angular displacement from a 

unit moment are denoted ij , where the index i is the point of the beam and the 

direction of movement; index j - the reason that caused a single movement. 

 

 

3.2.1. Maxwell – Mohr  integral 
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Consider a beam of a length   loaded at point 1 by force F  (Fig. 3.3). 

Determine the displacement 21  (at point 2 of the force applied at point 1).  

1. The first condition. At point 1 we apply a concentrated force F. The deflection 

at point 1 is 11 , at point 2 is 21 . In sections of a beam there is a bending moment 

from external loading xFM . The force F is applied statically and performs work 

111
2

1
= FW  on the way 11  (see the graph in Fig.3.3.1). Determine the potential 

energy of deformation, expressed in terms of bending moment, by the formula 

(3.12): =
 x

xF

EI

dzM
U

2

2

1 . But the potential energy of deformation 1U  is numerically 

equal to the work of external forces 1W , ie: 11 UW = . 

2. The second state. At point 2, we statically apply a unit force that, bending the 

beam, performs the work (see graph in Fig.3.3.2) on the displacement 22 . In 

sections of a beam there is a bending moment xM  from unit force. The work of a 

unit  force is 222 1
2

1
=W . Potential deformation energy is =

 x

x

EI

dzM
U

2

2

2 . As in 

the previous case 22 UW = . 

3. The third state. At point 2, we statically apply a unit force that, deforming the 

beam, performs the work 2W  on the displacement 22  (see graph in Fig. 3.3.3). To 

the deformed beam statically in point 1 we apply the concentrated force F  which, 

deforming a beam with already applied unit force, carries out work 1W  (see the 

schedule) on displacement 11 . 



 38 

 

Figure 3.3 -Three conditions of beam 

 

Point 2 will receive another displacement 21 , and a unit force will perform the 

work 21
*

2 1 =W  (see graph) on the displacement 21 . From action of force F  

and unit loading in sections of a beam there is a total bending moment 

)( xxF MM + . The work of the two forces will be defined as: 

2122112213 11
2

1

2

1
++=++=  FWWWW , 

and the potential energy of elastic deformation is expressed in terms of the total 

bending moment as: 

                          ++=
+

=


dz
EI

MM

EI

dzM

EI

dzM

EI

dzMM
U

x

xxF

x

x

x

xF

x

xxF

222

)( 222

3 . 

Comparing the expressions for 33 U,W , after simple transformations we obtain: 

                                               =


dz
EI

MM

x

xxF
21 .                                           (3.5) 
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The procedure for determining displacements using the Maxwell–Mohr 

integral. 

1. We apply external loading, we define basic reactions, we break a beam into 

sites, we write down expressions (functions) of the bending moment xFM  for 

each site. 

2. At the point, the movement of which is determined, apply: 

a) Unit force in determining the deflection (linear displacement); 

b) The unit moment in determining the angular displacement. 

Determine the support reactions and in the same order as for the external load, 

write the expressions (functions) of the bending moment xM  at each section.  

3. Substitute the functions (expressions) xFM , xM  in the Maxwell-Mohr integral 

and make the appropriate calculations. 

4. The result of the calculations is positive if the direction of the applied unit load 

coincides with the direction of actual movement, and negative if the direction 

of the applied unit load does not coincide with the direction of actual movement. 

Example 2. Cantilever beam of constant cross section (EIx=const) length   loaded 

at the end of the concentrated force F  (Fig. 3.4, a). Determine the deflection AV  

and angle of rotation A  at the end of the console.  

 

Figure 3.4 – Algorithm for determining displacements 

 

a)

_ 

b) 

c) 
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1. Write the function FzM xF −=  (Fig. 3.4, a). 

2. At a point A , apply a unit force (Fig. 3.4, b) and write the function 

 zM x −= 1 . 

3. Substituting xFM , xM  into the integral, we obtain: 

 ==
 

0

3

3

1

xx
A

EI

F
dzzzF

EI
V  (see example 1 in Fig. 3.2). 

4. To determine the angular displacement at a point A , apply a unit moment (Fig. 

3.4, c) and write the function 1=xM . 

5. Substituting xFM , xFM  into the integral, we obtain: 

 −=−=
 

0

2

2
1)(

1

xx
A

EI

F
dzzF

EI
 . 

The result of the calculation of the deflection AV  is positive, because the applied 

unit force coincides with the direction of the actual movement. The result of 

calculating the angle of rotation A  is negative, because the applied unit moment 

in the direction does not coincide with the actual direction of the angle of rotation 

of the section at the point A . 

 

 

 

 

 

 

 

 

 

 

3.2.2. Geometric method of calculating the Maxwell-Mohr integral.  The 

method of multiplying plots 



 41 

 

 

Figure 3.5 - Multiplying plots due to Vereshchagin's rule 

 

Vereshchagin's rule. Using the geometric interpretation of the definition of the 

integral as the value of the area, the Mohr integral to determine the displacements 

in the beams of constant cross section can be calculated using a special operation 

on the plots of the corresponding bending moments. 

As a result, we obtain: 

 

                                         


==
 x

xCxF

x

xxF
ij

EI

M
dz

EI

MM
,                            (3.6) 

 

where xF  is the area of the load (from external load) plot xFM ; xCM  - ordinate 

taken from a single plot (from unit force) xM  below the center of gravity C  of the 

load plot. 

Rule of signs. If the multiplied plots lie on one side (both above or below), the 

product is positive; if the multiplied plots lie on different sides - the product is 

negative. 
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If the plot of the external load is piecewise linear in sections, and a single 

plot is always piecewise linear, the result of multiplication does not depend on the 

order of use of the coefficients, ie: 

                             
x

FCx

x

xCxF

EI

M

EI

М 
=


,                                           (3.7) 

where xF  is the area of the plot from the external load; x - plot area from a unit 

load; FCM - ordinate under the center of gravity of a unit plot xM , taken from the 

plot xFM  from an external load. 

If the plots xFM , xM  consist of several sections, the multiplication is 

carried out by sections, and the result is summed, ie:  

 


=


=

n

i x

ixCixF
ij

EI

M

1

.                                             (3.8) 

 

Note that in the considered problems the plots of load and unit bending 

moments consist of rather simple areas: rectangle, triangle, parabolic triangle, etc. 

The table shows the areas  and the coordinates of the centers of gravity zc of flat 

figures found in the plots. 

 

When solving specific problems, it is advisable to use the trapezoidal rule 

for multiplying linear diagrams and the Simpson-Karnaukhov rule for multiplying 

any diagrams (in most cases nonlinear). 
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Figure 3.6 - Trapezoid and Simpson-Karnaukhov rule 

 

Trapezoid rule (only for linear plots - Fig. 3.6, a). In the case when the plot xFM  

(from the external load) is linear, the multiplication of the plots can be performed 

according to the trapezoidal rule. The result of multiplication of linear plots on a 

plot of length   is equal to: 

                                   )22(
6

dbcacbda
EI x

+++=


.  

Rule of signs: if the ordinates that multiply are one sign (lie on one side), the 

resulting product is positive, if the signs of the ordinates are different - the product 

is negative. 

Simpson-Karnaukhov rule (for linear diagrams and diagrams described by a 

square parabola, Fig. 3.6, b). The result of the product is as follows: 

 

                                           )4(
6

002211 hhhhhh
EI x

++=


.  

 

Here 21,hh  are the extreme ordinates of the load plot (nonlinear) on the site; 21,hh

- extreme ordinates of a unit plot (linear) on the site; 0h and 0h - the average 

ordinates of the plots on the site. The rule of signs when multiplying ordinates is 

similar to the rule of trapezoid. 

 

a) b) 
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Example 3. For a cantilever beam loaded with external forces, as shown in Fig. 

3.7, determine the deflection and angle of rotation at the end of the cantilever in 

the section A . 

1. We define support reactions.  

 = 0yiF ; qaRRaqF BB 203 ==+− . 

 = 0BiM ; 25,105,336 qaMMaaqaF BB ==−+− . 

Check: 

 −+−−=−+−−= 0)5,11235,7(65,23 2qaMaRMaaqM BBAi . 

 

2. We write down the expressions yQ  and xM  , build the corresponding plots. 

az  10  :   qaFQ y == ; 11 zqaqzFM x == . 

az 30 2   : 22 zqqazqFQy −=−= .  

Shear force changes sign at az = . 

2
)(

2
)(

2
2

2
2

2

z
qazqa

z
qazFM x −+=−+= . 

222
мах 5,15,02 qaqaqaMM

zxx =−==
=a

;

2
2

2

5,1
375,1)

2

5,1
5,2( qaqaM

zx =−=
= a

. 

az 20 3  : qaQ y 2−= ; zqaqazRMM BBx +−=+−= 25,1 2 . 

 

3. At the point A , we apply a unit force, build the plot zM x −= 1 , defining the 

ordinates at the borders of each section.  
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Figure 3.7 - Cantilever beam loaded with external forces 

 

4. By multiplying the plots xM  and xM , we determine the desired deflection:  

 

           

.
375,10

]2225,382[
6

)]65,1245,225,14

65,2(
6

2
)5,2375,145,0411(

6

3
1

3

2
11

2

1
[

44

4

xx

x
A

EI

qa

EI

qa

EI

qa
V

−=−−−=+−+

+−+−+−+−=

 

Here, on the first section, the multiplication of epurs is performed according to 

Vereshchagin's rule; on the second - Simpson rule, on the third - trapezoid rule. 

The minus sign indicates that the section moves up under the action of an external 

load. 



 46 

5. At the point A , we apply a unit moment, build the plot 1=xM . Multiplying it 

by sections with a load plot, we determine the angle of rotation of the section A .  

.
5,4

]135,0[)]15,1215,2215,115,2(
6

2

)1375,1415,011(
6

3
111

2

1
[

33

3

xx

x
A

EI

qa

EI

qa

EI

qa

=++=−+−+

++−+=

 

Here, on the first section, multiplication is performed according to Vereshchagin's 

rule, on the second - Simpson's, on the third - trapezoid. The result of the 

calculations is positive, therefore, the direction of the angle of rotation of the 

section A  coincides with the direction of the unit moment. 
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4. GEOMETRIC CHARACTERISTICS OF CROSS SECTIONS  

 

The resistance of the rod to various types of deformation depends not only 

on its material and dimensions, but also on the shape of the cross section and its 

orientation. 

The main geometric characteristics of the object's cross-sections, which determine 

its resistance to various types of deformation, include cross-sectional areas, static 

moments, moments of inertia and moments of resistance. These characteristics for 

sections of a simple shape can be determined using special formulas, and for 

profiles of standard rolled steel (angles, channels, I-beams) - by tables of standards.

  

4.1.  Static moments of section 

 Consider an arbitrary figure (cross-section of a beam), associated with the 

coordinate axes Ох, Оу (Fig. 4.1). Let's select an element of the area dF with 

coordinates x, y. 

  

 

 

Figure 4.1 - Section of an arbitrary shape  

 

By analogy to the expression of the moment of forces relative to any axis, 

expressions can also be formulated for the moment of area, which is called the 

static moment of the section and is defined as 
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 ==
A

y

A

x xdASydAS ; . (4.1) 

 

Static moments are expressed in units of cubic length (m³).  

 Let Xc, Yс be the coordinates of the center of gravity of the figure. 

Continuing the analogy with moments of forces, the following expression can be 

written on the basis of the theorem on the moment of uniform action: 

,; CyCx AxSAyS ==  

where A is the area of the figure. Then the coordinates of the center of gravity 

 

;;
A

S
y

A

S
x x

C

y

C ==  
(4.2) 

 

 The static moments of the area relative to the central axes (axes passing 

through the center of gravity) are zero. To calculate the static moments of a 

complex figure, it is divided into simple parts, for each of which the area and 

position of the center of gravity are known. After that, the static moment of the 

area of the entire figure relative to the given axis is determined as the sum of the 

static moments of each part.  

 

4.2. Area moment of inertia  

 The axial (equatorial) moment of inertia of a section is called the integral of 

products of elementary areas by the squares of their distances to the considered 

axes,  

 ==
A

y

A

x dAxIdAyI ;; 22
    (4.3) 

The polar moment of inertia relative to a given point (pole 0) is called the 

integral of products of elementary areas by the squares of their distances from the 

pole, 
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=
A

dAI 2 , (4.4) 

 The centrifugal moment of inertia of the section is called the integral of the 

products of the planes of the elementary plots at their distance from the coordinate 

axes, 

 

=
A

xy xydAI . (4.5) 

 

Moments of inertia are measured in units of length in the fourth degree (m4). 

 

Moments of inertia III yx ,,  are positive values and are related to each other by a 

simple relationship that follows from the equation 222 yx +=  (Fig. 4.1): 

yx III += . From this dependence follows the property of invariance (constancy) 

of the sum yx II +  when the coordinate axes are rotated.  Since when rotating the 

axes 1X , 1Y  (Fig. 4.1) the value  for each area dA does not change, then 

  

11 yxyx IIII +=+   . (4.6) 

 

Note that the moment of inertia of a complex section is equal to the algebraic sum 

of the moments of inertia of its parts.  

The value xyI  can be positive or negative depending on the location of the X, Y 

axes. A simple and practically important example when 0=xyI , is the case of a 

symmetric section. Let, for example, the Y axis coincide with the axis of symmetry 

of the section (Fig. 4.2). 
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Figure 4.2 – Symmetrical section 

 

Then, for each area dA  with positive XY, there will be a symmetrical area 

1dA  with the same size, but already negative XY. In sum, the centrifugal moment 

of inertia of these two platforms, and therefore xyI  of the entire section, will be 

zero. 

4.3. Moments of inertia relative to parallel axes  

(Parallel axis theorem) 

 Often, when solving practical problems, it is necessary to determine the 

moments of inertia of a section relative to axes oriented in different ways in its 

plane. Therefore, it is important to establish dependencies between the moments of 

inertia of the same section relative to different axes.  

 Let the moments of inertia relative to the central axes X,Y be known, and it 

is necessary to determine the moments of inertia relative to the axes that are parallel 

to the central axes. (Fig. 4. 3). 

 

 

Figure 4.3 - Parallel transfer of coordinate axes 

 

axis of symmetry 
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The distances between the axes are equal to a and b. Coordinates х1, у1  and 

x, y are related by the following dependencies: х1 = х + b;      у1 = у + а. 

Substituting these expressions into the integrals of the moments of inertia, 

after performing the appropriate transformations, we obtain the transition formulas 

for parallel axes: 

 

  AaII xx
2

1 +=   , 

  AbII yy
2

1 +=   , 

        AabII xyyx +=11   . 

 

(4.7) 

 

 Note that the coordinates a, b, which are included in the last of these 

formulas, should be substituted taking into account their signs. Formulas (4.7) 

show that of all the moments of inertia relative to a series of parallel axes, the 

central moments of inertia will be the smallest. 

  

4.4. Moments of inertia when turning axes  

Let the moments of inertia of an arbitrary figure relative to the coordinate 

axes X,Y be known.  Let's turn the X,Y axes to the angle  counterclockwise, 

considering the angle of rotation of the axes in this direction (Fig. 4.4).  

 

 

Figure 4.4 - Rotation of coordinate axes 
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Having expressed the coordinates of an arbitrary elementary platform in new 

axes through the coordinates of the previous system, after the appropriate 

transformations we obtain the transition formulas when the axes are rotated: 

 

 2sinsincos 22
1 xyyxx IIII −+=  

 2sincossin 22
1 xyyxy IIII ++=  

   ( )  2sin
2

1
2cos11 xyxyyx IIII −−=   . 

  

 

(4.8) 

Note that these formulas obtained by rotating any system of mutually perpendicular 

axes are naturally also valid for the central axes. 

  

4.5. The principal moments of inertia  

 Formulas (4.8) make it possible to establish how the moments of inertia of 

the section change when the axes are rotated by an arbitrary angle . 

For certain values of the angle  , the axial moments of inertia reach a maximum 

and a minimum. The extreme values of the axial moments of inertia are called the 

principal moments of inertia.  

The axes relative to which the axial moments of inertia have extreme values are 

called the principal axes of inertia. The main axes of inertia are mutually 

perpendicular. The main central axes, the location of which is determined from 

 

xy

xy

II

I

−
=

2
2tg 0    . 

 

(4.9) 

The two values of the angle 0 obtained from formula (4.9) differ from each other 

by 90 and give the position of the main axes, one of which is the axis of maximum 

(relative to it the axial moment of inertia of the section is maximum), and the 

second is the axis of minimum (relative to it the axial moment of inertia of the 

section is minimal).  
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The main moments of inertia minmax , II  are determined by the formula , which 

can be easily obtained from dependencies (4.8) and (4.9): 

 

( ) 22max
min 4

2
xyxy

xy
III

II
I +−

+
= . 

(4.10) 

 

4.6. Moments of inertia for some sections  

Consider simple cross-sections in the form of a rectangle and a triangle with 

bases b and height h and a circle with diameter D. We need to find their moments 

of inertia relative to the central axis X. 

 

Solution. 

According to the definition of the axial moment for a rectangle  

 

 

 
12

3bh
I x =      

36

3bh
I x =     

32
;

64

44 D
I

D
I px


==  

    

Figure 4.5– Common cross-sections 

 

12

32

2

22 bh
dyybdAyI

h

h

x  
−

===    . 

 

(4.11) 

The formula for the axial moment of inertia of a triangle 4.12 (Figure 4.5, b) and 

the formula for the axial moment of inertia of a circle 4.13 are derived similarly. 
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36

3bh
I x =    

 

(4.12) 

64

4D
I x


=  

 

(4.13) 

The polar moment of inertia of the circle is determined  

32
2

42

0

32 D
ddAI

D

p


  ===  . 

 

(4.14) 

It should be noted that the last value is two times greater than the axial 

moment of inertia of the circle. This also follows from the equation 

xyxp IIII 2=+= , since for a circle yx II = . 

The radii of inertia of the figure are called quantities 

  

A

I
i

A

I
i

y

y
x

x == ,    . 
(4.15) 

 

4.7. Resistance Moment (section modulus) 

The resistance moments (section modulus) of the figure are the ratio of the 

corresponding moment of inertia to the distance to the farthest point. 

Axial 

maxY

I
W x

x =   , 

      

maxX

I
W

y

y =      . 

               

 

(4.16) 

Polar 

                 

max

p

p

I
W =     . 

 

(4.17) 
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5. GENERAL INSTRUCTIONS FOR PERFORMING CALCULATION 

AND DESIGN WORKS AND THE REQUIREMENTS FOR THEIR 

FORMATION  

 

Resistance of materials occupies the most important place among the 

fundamental disciplines in the cycle of general engineering training of students. 

 The goal of the course is for future engineers to acquire practical skills in 

strength calculations. 

When starting work, the student must:  

study the theoretical material of the corresponding section of the course 

according to the synopsis and additional educational literature;  

work through examples and problems that were solved at lectures and 

practical classes;  

analyze the initial data and the statement of the problem and outline a plan 

for its implementation;  

make initial presentations: draw the diagram of the beam, write down the 

formulas and equations necessary for solving the problem (equation of static 

equilibrium, etc.).  

draft the task and, if necessary, consult the teacher. 

Calculations must be made in a general form with intermediate statements 

in ordinary or decimal fractions, keeping three significant figures everywhere. To 

build the graphs of internal force factors, stresses and displacements, it is necessary 

to correctly choose the scale along the coordinate axes, mark the appropriate 

parameter and its dimension, and then draw a graph based on the required number 

of points. 

The assignment is subject to credit if the following conditions are met:  

the finished version of the calculation and design task was passed and the 

correct answers to the control questions were given;  

the control tasks at the consultations were solved.  
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The final version of the task is drawn up on sheets of A4 paper. 

Output data:   

❑ load diagrams of five beams /Table 5.1/; 

❑ magnitudes of external forces and geometric dimensions of the beams,  

strength characteristics of beam material (yield strength for steel and strength 

limit  for cast iron), safety factor /Тable 5.2/; 

❑ configuration of the complex cross-section of the beam /Table 5.3/.  

Task execution procedure. 

1. Construct diagrams of internal transverse forces and bending moments for all 

beams.  

2. Select a number of simple sections of the beam marked by the teacher according 

to the condition of strength under normal stresses and make a comparative 

analysis of the degree of their rationality.  

3. Determine the margin of strength nT
0 of the same beam, if its cross-section has 

a complex configuration /Table 5.3/.  

4. Determine the permissible value of external forces for one example of a beam 

from the table 1. 

Solution plan  

1) According to the given option, draw the calculation schemes of the beams 

together with their load, observing a certain scale.  

2) For each beam, determine the support reactions (numerically or in general 

form), make expressions and calculate the internal forces yQ , xM  in all areas, 

draw their diagrams and check the correspondence of the diagrams to the 

differential ratios between the force factors during bending.  

3) For each beam, find the dangerous section from the point of view of strength 

under normal stresses and determine the maximum bending moment MXmax  by 

module. 

4) Calculate the permissible stress.  
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5) Determine the necessary axial moment of resistance WX from the solution of the 

strength condition.  

6) Select simple sections in the form:  

– a rectangle with aspect ratios 2/ =bh ;  

– a rectangle with the inverse aspect ratio 2/ =hb ;  

– a circle;  

– a ring in which 8.0/ == Dd ;  

– I-beam.  

Calculate the cross-sectional area. Submit the obtained results in the form of a 

table (see the appendix). 

7) For dangerous cross-sections of the I-beam, construct normal and tangential 

stress distribution graphs with calculation of their values at characteristic points 

of the cross-section.  

8) In the section of the I-beam beam specified by the teacher, find its deflection.  

9) For a beam of complex cross-section, calculate the margin of strength nT
0 

relative to the yield point. For this you need:  

– determine the coordinates  XC, YC of the center of gravity of the cross-sectional 

area, as well as the position of the main central axes;  

– find the neutral axis and the distance from it to the farthest cross-section point 

Ymax;  

– calculate the axial moment of inertia IX relative to the neutral axis X;   

– find the largest stresses max in the cross-section of the beam and construct 

the graph . 

– calculate the margin of safety nT
0.  

10) Select the allowable value of external forces for the generally given beam 

scheme according to the condition of strength under normal stresses. Accept the 

material of the beam - cast iron KCh 30-6 with different values of yield strength 

in tension-compression and a complex cross-section of its version /Table 3/. 
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Table 5.1 - Load 

diagrams of five 

beams 
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Continuation of the 

Table 5.1 
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Continuation of the 

Table 5.1 
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Continuation of the 

Table 5.1 
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Steel : Т = 300  MPa; 

Cast iron KCh30 – 6 :  Т
+ = 190 MPa, Т

–  = 210 MPa . 
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Table 5.3 - 

Complex 

cross-section 

of the beam 
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Continuation of the 

Table 5.3 
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           Task performance sequence 

First, it is necessary to build the graphs of the internal force factors during 

bending for all the beams of the variant of the task. The strength condition under 

normal stresses must be fulfilled at the most dangerous point of the dangerous 

section: 

                                             = max
max Y

I

M

X

X  .                                  (5.1) 

Оr for sections symmetrical about the neutral line: 

                                              =
X

X

W

M max  .                                            (5.2) 

The section where the maximum in absolute value bending moment MXmax 

acts on the MX  plot is considered dangerous.  

The dangerous point in the section has the Ymax coordinate and is located at 

the greatest distance from the neutral line - the X axis.  

The permissible stress is determined by the formula:  

 

                                                          
T

T

n


=    .                  (5.3) 

 The necessary moment of resistance is found from the condition of strength 

                                                
 

 maxX
X

M
W   .                                          (5.4) 

The selection of the necessary dimensions of the cross-sections of the beam 

is carried out as follows: 

❑ for a I-beam, the profile number is determined by comparing the found moment 

of resistance with the assortment data; 

❑ for a rectangle, the axial moment of resistance is determined by the dimensions 

of the sides h and b as: 
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6

2bh
WX =  ,                      

where h is the side of the rectangle perpendicular to the X axis.  

Because                    

                                 k
b

h =  ,                     / k =2; 0,5 /, 

then 
k

hb =  and 
k

hWX 6

3
=  from where 3 6 XkWh =  , 

Cross-sectional area hbA =  

❑ for a circle 
3

3

1.0
32

d
d

WX 


= , then 3 10 XWd =  and the cross-sectional area is 

4

2dA = . 

❑ for the ring ( ) ( )434
3

11.01
32

−−


= D
D

WX , where 
D

d= ; d, D are the 

inner and outer diameters of the ring, respectively. Area of the ring 

( )4
2

1
4

−


=
D

A . 

 

Determination of the safety margin of a complex section:  

1. According to the parameter L (Table 5.2) and the assortment of standard 

profiles, set the characteristic dimensions of the section and depict it, 

observing the scale.  

2. Break the cross-section into such simple component parts, the center of 

gravity of which and the axial moments of inertia are known or easily found. 

3. For each constituent part of the section, determine and draw its own main 

central axes Xi, Yi. 

4. Calculate the coordinates of the center of gravity of the complex section: 
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







=

=

=

= ==
N

i
i

N

i
Cii

N

i
i

N

i
Yi

C

A

XA

A

S

X

1

1

1

1  ,   









=

=

=

= ==
N

i
i

N

i
Cii

N

i
i

N

i
Xi

i

A

YA

A

S

Y

1

1

1

1  ,                 (5.5) 

where SYi, SXi –  static moments of the i-th component of the cross-section 

relative to any fixed system of axes CiCi YXYX ,;, 00 – coordinates of the 

centers of gravity of the i-th component of the cross-section in the selected 

coordinate system 00 ,YX ; Ai is the area of the ith component of the section. The 

summation in (5.5) is carried out by the number N of constituent parts of the 

section. 

5. Draw the main central axes X, Y of the complex section. 

6. Determine the axial moment of inertia IX of the given section, taking into 

account the following: 

if the main central axes Xi, Yi of the constituent part of the section are 

parallel to the main central axes X, Y, then 

( ) iiXiiX AaII 2+=  ,                                              (5.6) 

where  

ai – is the distance between the X and Xi axes;  

IXi – the moment of inertia of the component part of the section relative to 

its own axis Xi ; the moment of inertia of a complex figure relative to the 

main central axis is equal to the sum of the moments of inertia of its 

component parts relative to the same axis: 


=

=
N

i
XiX II

1

 .                                                (5.7) 

 

So, 

( )
=

+=
N

i
iiXiX AaII

1

2   .                                     (5.8) 
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 Find the maximum stresses using formula (5.1).  

7. Calculate the margin of strength of a complex section according to (5.9) 

max


= T
Tn   .                                              (5.9) 

It is sufficient to construct normal and tangential stress distribution graphs 

only for a beam of I-beam section. Determine the contours of normal 

stresses   in the section where MXmax acts, and find the distribution of 

tangential stresses   for the section with the maximum by module shear 

force QYmax. On the plot  , mark the zones of tension and compression, and 

on the plot - the direction of the vector of tangential stresses. Calculation of 

tangential stresses   should be carried out according to the formula of D. I. 

Zhuravskyi (5.10) for characteristic points of the section: 

– the furthest from the neutral axis;  

– that lie at the junction of the I-beam shelves with the wall;  

– lying on the neutral axis of the section: 

x

cut
xy

Ib

SQ




=

max
 ,                                         (5.10) 

here QYmax   is the maximum internal force in the beam by modulus;  

SX
сut – static moment of the cut-off part of the cross-sectional area at the 

level where the tangential stress relative to the neutral axis X is determined;  

IX – axial moment of inertia of the section; 

 b – is the width of the cross-sectional area at the level where the tangential 

stress is determined. 

8. Movements (deflection) in beams are found according to the energy method 

using Mohr's integral:  

dz
EI

MM
V

l X

iX



=

__

 ,                                            (5.11) 

which can be calculated by Vereshchagin's rule. 
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i

iX

EI

MM

V











=

__

  .                                             (5.12) 

In relation (5.12) MX   – plot of bending moment from external forces; 

iM
__

– the plot of the «fictitious» bending moment from the unit force applied 

in the section where the deflection is located. 

It should be taken into account that the expression (5.12) can be calculated 

by a graphoanalytical method according to the formulas given in Fig. 5.1, 

while the general curves of bending moments iX MM
__

,  must be divided 

into parts within which the specified functions remain unchanged. 

9. Choose the permissible value of the external force according to the strength 

conditions for a complex cross-section, taking into account the different tensile 

and compressive properties of cast iron. 

 

Figure 5.1 - Graphoanalytical method 
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Аppendices 

Аppendix 1 - A sample task 

 

A sample task  

Initial data: nT = 1.5, L = 10 cm 

The material of beams №1- 4 is steel 

yield stress T  = 300 МPa 

E = 2·105 МPa 

The material of beam №5 is cast iron 

КЧ 30 – 6              

ultimate stress                                          

МPа190=+
 

MPa210=−  

  E=2,0 105 МPа 
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Continuation of appendix 1 

 

Calculation of beam №4: 

1. Determination of reactions  

 503/)102220420(  ;02234   ;0

 103/)101220120(  ;03121   ;0

223

223

=−+==−+−=

=++−==+−−=





AAB

BBA

RMqRFM

RRMqFM кN; 

Check:  0220201050   0;2qFRR   0;F 23BAiy
=−−+=−−+= .  

2. Determination of shear forces QY and bending moments MX                                                                                                               
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xy
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1|0|

3333

33
==

=−=−=

== мzxzx

BxBy

MM
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3. Selection of sections based on strength conditions 

.сm 100
10200

101020

        ;MPa  200
51

300
][

][
];[

3

6

63

maxmax
max

=





====

X

T

TX
X

X

X

W

 
.n

σ
;    

M
  W

W

M
σ 




 

 

We accept       Ι №16: ,сm 2.20    ,сm 109    ,сm 873 234 === AWI xx  

mm 81   ,mm 8.7   ,mm 5   ,сm 16   ,сm 3.62                                       3
max ===== btdhSx . 
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Continuation of appendix 1 
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Continuation of appendix 1 

4. Stress in the I-beam  

 

 

 

;  ÌPà180
1010109

1020
66

3

max =



=

−
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−−

−

  

5. Determination of the safety factor nT
0 of a complex section  

An extract from the assortment for channel №10 gives:  

 

 

 

  A   I   I yx ,ñm9.10,ñm4.20,ñm174 242 ===

.ñm 10ñm,44.1mm,46 0 === h    z    b  

Then for a complex section we have: 

 

ñm 14.5
822109.10

)44.782(244.610
;0

2

2

=
−+

−
== cc y      x ; 

 

 

 

 

σ, MPa 

l= 10 cm 

σ, MPa       τ, MPa 
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Continuation of appendix 1 
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6. Calculation of the permissible external force for a beam of complex cross-

section (see clause 5) 

 

The material is cast iron КЧ 30 – 6, 

,5.1ÌPà,210ÌPà,190 Ò.TT === −+ n    σ         a =1.2 m, b =2.8 m, c =1 m . 

Determination of reaction  
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Determination of QY and MX   
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Continuation of appendix 1 
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For a complex section (see point 5), the upper fibers work in tension, and the lower 

ones in compression. From the strength condition, taking into account that MXmax= 

–5.04q, 
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we take a smaller value: [q]=3249.6 N/m  3.25 kN/m, then 

.mkN 36.92

;kN 70.113

2
0

0

==

==

qaM

qaF
 

It should be noted that this cross-section is located rationally, because in the 

upper fibers working for stretching, the absolute values of stresses are smaller than 

in the lower ones, while  []+<[]–. 

                                                                        

7. Determine the displacement of beam #4 at the point of application of force F3.  

To do this, we will apply force 1=F  at this point and build a plot 1M .  
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Continuation of appendix 1 

Reactions of supports: 
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The plot 1M  is built according to the same rules as MX. Let's draw the plot MX 

again, taking into account the value in the center of the second section of the  

MX (z2 = 2) = 0. 

We determine displacement by graphical calculation of Mohr's integral: 
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For a steel beam of  I-beam section (IX = 873 сm4) 

 m1099,6
10873102

102.12 3

811

3

 V −

−
=




=  . 

The task of determining the angle of rotation of any section is solved 

similarly by applying a unit moment 1=М . 
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Appendix 2 - Assortment of standard profiles 
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Continuation of appendix 2 
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  Figure 5.2 - I-beam   Figure 5.3 - Channel 
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